首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
J. -Z. Que  M. W. Radny  P. V. Smith   《Surface science》2003,540(2-3):265-273
Several models have been proposed in the literature for the initial stages of the dissociative chemisorption of silane (SiH4) on the Si(1 1 1)7 × 7 surface. In this paper, geometry optimisation calculations using the extended Brenner empirical potential have been performed to determine which of these models yields the minimum energy structure. The lowest energy configurations are found to correspond to the dissociation of silane into SiH2 and two hydrogen atoms. The minimum energy structure involves the adsorption of the two hydrogen atoms onto the dangling bonds of an adjacent adatom and rest atom, and the insertion of the remaining SiH2 fragment into one of the adatom backbonds. These results are discussed in the light of the existing experimental data.  相似文献   

2.
The adsorption of NH3 molecule on the Si(1 1 1)-7 × 7 surface modelled with a cluster has been studied using density functional theory (DFT). The results indicate the existence of a precursor state for the non-dissociative chemisorption. The active site for the molecular chemisorption is the adatom; while the NH3 molecule adsorbs on the Si restatom via this preadsorbed state, the adsorption on the Si adatom is produced practically without an energy barrier. The ammonia adsorption on the adatom induces an electron transfer from the dangling bond of this atom to the dangling bond of the adjacent Si restatom, hindering this site for the adsorption of a second NH3 incoming molecule. However, this second molecule links strongly by means of two H-bonds. The dissociative chemisorption process was studied considering one and two ammonia molecules. For the dissociation of a lonely NH3 molecule an energy barrier of ∼0.3 eV was calculated, yielding NH2 on the adatom and H on the restatom. When two molecules are adsorbed, the NH3-NH3 interaction yields the weakening of a N-H bond of the ammonia molecule adsorbed closer the Si surface. As a consequence, the dissociation barrier practically disappears. Thus, the presence of a second NH3 molecule at the adatom-restatom pair of the Si(1 1 1)-7 × 7 surface makes the dissociative reaction self-assisted, the total adsorption process elapsing with a negligible activation barrier (less than 0.01 eV).  相似文献   

3.
The adsorption of chlorobenzene on Si(111)7 × 7 at room temperature was studied by scanning tunneling microscopy (STM). Selective chemisorption was observed at different adatom sites. It was found that the center adatoms were more reactive than the corner adatoms, and the faulted half of the unit cell was more reactive than the unfaulted. The mechanism is discussed in terms of the electronic and atomic structures in Si(111)7 × 7. Both preferences indicate that chlorobenzene was present initially in a mobile precursor state.  相似文献   

4.
The linear combination of surface atom orbitals to which an adatom orbital will couple plays the important role of being the essential link between the adsorbate and the semi-infinite substrate. The group orbital (as it is called) is a function of the substrate character, the local adsorption geometry, and the adatom orbital. We present the spectral densities of states appropriate to the adsorption of a hydrogen or transition metal atom on a transition metal substrate for simple geometries, and comment upon some of the implications of the results for both past and future assumptions in chemisorption theory.  相似文献   

5.
We investigate the low-coverage regime of vanadium deposition on the Si(1 1 1)-7 × 7 surface using a combination of scanning tunnelling microscopy (STM) and density-functional theory (DFT) adsorption energy calculations. We theoretically identify the most stable structures in this system: (i) substitutional vanadium atoms at silicon adatom positions; (ii) interstitial vanadium atoms between silicon adatoms and rest atoms; and (iii) interstitial vanadium - silicon adatom vacancy complexes. STM images reveal two simple vanadium-related features near the Si adatom positions: bright spots at both polarities (BB) and dark spots for empty and bright spots for filled states (DB). We relate the BB spots to the interstitial structures and the DB spots to substitutional structures.  相似文献   

6.
Ab initio self-consistent total energy calculations using second order Møller-Plesset perturbation theory and Hay-Wadt effective core potentials with associated basis sets (HWECP’s) for gallium and arsenic have been used to investigate the chemisorption properties of atomic aluminum on the Ga-rich GaAs(100)-(2 × 1) and β(4 × 2) surfaces. Finite sized hydrogen saturated clusters with the experimental zinc-blende lattice constant of 5.654 Å and the energy optimized Ga dimer bond length of 2.758 Å have been used to model the semiconductor surface. To investigate the effects of the core electrons of aluminum in the adsorption process, we have represented the Al adatom with both HWECP’s and an all electron 6-311++G** basis set. Detailed energetics of chemisorption on the (100) surface, including chemisorption energies, nearest surface neighbor bond lengths, and Mulliken population analysis, have been reported for all considered sites of chemisorption.  相似文献   

7.
Electronic structures of chemisorption on Si(111)/H,C1 are investigated by the first principle DV-Xα cluster method. The calculations are carried out for chemisorption on different sites, based on the Si13H15 cluster, and the effect of surface vacancy and buckling on the electronic structure is examined in detail. The present calculation shows that the Si13H15 surface cluster reproduces very well the more sophisticated band calculation for the Si(111) surface. It is concluded that the vacancy model with chemisorbed atoms at appropriate sites is reasonable to interpret the observed UPS of Si(111) 7 × 7/H,C1. The charge transfer between the substrate atom and the adatom depends strongly both on the chemisorption sites and on the electronegativitv difference.  相似文献   

8.
Ab initio total energy calculations within the framework of density functional theory have been performed for atomic hydrogen and oxygen chemisorption on the (0001) surface of double hexagonal packed americium using a full-potential all-electron linearized augmented plane wave plus local orbitals method. Chemisorption energies were optimized with respect to the distance of the adatom from the relaxed surface for three adsorption sites, namely top, bridge, and hollow hcp sites, the adlayer structure corresponding to coverage of a 0.25 monolayer in all cases. Chemisorption energies were computed at the scalar-relativistic level (no spin-orbit coupling NSOC) and at the fully relativistic level (with spin-orbit coupling SOC). The two-fold bridge adsorption site was found to be the most stable site for O at both the NSOC and SOC theoretical levels with chemisorption energies of 8.204 eV and 8.368 eV respectively, while the three-fold hollow hcp adsorption site was found to be the most stable site for H with chemisorption energies of 3.136 eV at the NSOC level and 3.217 eV at the SOC level. The respective distances of the H and O adatoms from the surface were found to be 1.196 ?and 1.164 ?. Overall our calculations indicate that chemisorption energies in cases with SOC are slightly more stable than the cases with NSOC in the 0.049–0.238 eV range. The work functions and net magnetic moments respectively increased and decreased in all cases compared with the corresponding quantities of bare dhcp Am (0001) surface. The partial charges inside the muffin-tins, difference charge density distributions, and the local density of states have been used to analyze the Am-adatom bond interactions in detail. The implications of chemisorption on Am 5f electron localization-delocalization are also discussed.  相似文献   

9.
Oxygen adsorptions on -Pu (100) and (111) surfaces have been studied at both non-spin-polarized and spin-polarized levels using the generalized gradient approximation of density functional theory (GGA-DFT) with Perdew and Wang (PW) functionals. The center position of the (100) surface is found to be the most favorable site with chemisorption energies of 7.386 eV and 7.080 eV at the two levels of theory. The distances of the oxygen adatom from the Pu surface are found to be 0.92 Å and 1.02 Å, respectively. For the (111) surface non-spin-polarized calculations, the center position is also the preferred site with a chemisorption energy of 7.070 eV and the distance of the adatom being 1.31 Å, but for spin-polarized calculations the bridge and the center sites are found to be basically degenerate, the difference in chemisorption energies being only 0.021 eV. In general, due to the adsorption of oxygen, plutonium 5f orbitals are pushed further below the Fermi energy, compared to the bare plutonium layers. The work function, in general, increases due to oxygen adsorption on plutonium surfaces.Received: 20 July 2004, Published online: 9 September 2004PACS: 71.15.-m Methods of electronic structure calculations - 71.15.Mb Density functional theory, local density approximation, gradient and other corrections - 71.15.Nc Total energy and cohesive energy calculations 71.27. + a Strongly correlated electron systems; heavy fermions  相似文献   

10.
Extensive density-functional calculations on atomic chemisorption of H, B, C, N, O, F, Al, Si, P, S, and Cl on the polar TiC(1 1 1) and TiN(1 1 1) yield similar adsorption trends for the two surfaces: (i) pyramid-like adsorption-energy trends along the adatom periods; (ii) strongest adsorption for O, C, N, S, and F; (iii) large adsorption variety; (iv) record-high adsorption energy for O (8.4-8.8 eV). However, a stronger adsorption on TiN is found for elements on the left of the periodic table and on TiC for elements on the right. The results support that a concerted-coupling model, proposed for chemisorption on TiC, applies also to TiN.  相似文献   

11.
Initial hydrogen adsorption on the Si(1 1 1) 7 × 7 surface was studied by scanning tunneling microscopy (STM) in an ultrahigh vacuum. Room temperature adsorbed hydrogen on the adatom in the 7 × 7 reconstruction led to depression of adatoms in the STM images. The hydrogen uptake curve at the adatom site as a function of hydrogen exposure time was well represented by Langmuir adsorption. No preferential adsorption was seen among four inequivalent adatoms in the 7 × 7 reconstruction. Adsorption of the adjacent center and corner adatoms respectively showed ∼10% higher adsorption. Even though the number of reacted adatoms in the half unit of the 7 × 7 reconstruction was statistically random, the number of reacted adatoms in the nearest neighbor half unit was enhanced as the number of reacted sites increased in the half unit.  相似文献   

12.
The adsorption both of a single atom and a monolayer of atoms on the (001) surface of a model two-band crystal with the CsCI structure is investigated using the Green's function formalism and the phase shift technique. The electronic structure of the surface is described within the Linear Combination of Atomic Orbitals (LCAO) scheme and the Tight Binding (TB) approximation. Each adatom is represented by a single non-degenerate energy level. The adatoms are placed on the surface in both the on-site and the centered fourfold-site configuration. The change in the density of electronic states upon chemisorption is found, and comparison is made with similar results on a metal surface. It is shown that many, but not all, of the qualitative features in chemisorption on metallic surfaces can be transferred to the case of an insulating surface. In addition, it is shown that there are systematic variations in the density of states with adatom coverage which depend upon the absorption site.  相似文献   

13.
《Physics letters. A》2019,383(24):3018-3024
In this paper, we have investigated optoelectronic properties of two-dimensional GaN adsorbed with non-metal atoms: H, N and O based on first-principle. We find that adsorption of H, N and O atom on 2D GaN is achieved by chemisorption, and the most stable adsorption site is at the top of N atom. Band structure of 2D GaN after adsorbing H atom moves to low energy region and two-dimensional GaN is transformed into an n-type semiconductor. After adsorption of N atom, a new impurity energy appears at the Fermi level, and N adatom could induce magnetism into 2D GaN. Static dielectric constants of 2D GaN increase and adsorption spectrums have extend to infrared band when adsorbing H and N. Strong reflection peaks and strong adsorption peaks after adsorption are located at deep ultraviolet range, which is beneficial for optoelectronic application in the deep ultraviolet. Specifically, two-dimensional GaN adsorbed with H atom is more conducive to manufacture of nano-optoelectronic devices.  相似文献   

14.
Fu Huaxiang  Ye Ling 《Surface science》1991,250(1-3):L373-L378
The adsorption of potassium on several sites (T1, T4, H3) of a Si(111) surface is studied using the extended Hückel method and cluster models. The results show that the chemisorption energy on the T4 site is almost equal to that on the H3 site for an ideal surface. However, the analysis of chemical bonding of adatoms on a Si surface suggests that the chemisorption of adatoms might induce a kind of reconstruction on the Si(111) surface. Rough calculations for the adsorption on this reconstructed surface are carried out. In this paper, charge transfer, density of states and characterization of the bonds between the adatom and substrate Si atoms are also investigated in detail.  相似文献   

15.
Extensive ab initio calculations have been performed to study the energetics of a sodium (Na) atom and its dimer adsorbed on graphene using the SIESTA package Soler et al. (2002) [1] which works within a DFT(density functional theory)–GGA (generalized gradient approximation) pseudopotential framework. The adsorption energy, geometry, charge transfer, ionization potential and density of states (DOS), partial density states (PDOS) of adatom/dimer-graphene system have been calculated. After considering various sites for adsorption of Na on graphene, the center of a hexagonal ring of carbon atoms is found to be the preferred site of adsorption while the Na2 dimer prefers to rest parallel to the graphene sheet. We find insignificant energy differences among adsorption configurations involving different possible sites in parallel orientation, which implies high mobility of the dimer on the graphene sheet. We also notice only a slight distortion of the graphene sheet perpendicular to its plane upon adatom adsorption. However, some lateral displacements seen are more perceptible.  相似文献   

16.
A useful picture of chemisorption on metal surfaces is one in which a localized molecule is formed between the adatom and its nearest neighbor substrate atoms. The interaction responsible for the molecule formation is treated as the coupling between the adsorbate state and a group orbital formed from a linear combination of atomic orbitals on the substrate atoms. Within the surface molecule picture, level width and level shift functions, given by Newns modification of the Anderson theory, have been calculated and the resulting adatom density of states function has been obtained. This has been done for model systems in which the substrate is either a free electron metal or a tightbinding p-band metal and the adsorbate is s or p like. The results show how it is possible to simultaneously have narrow virtual levels due to chemisorption (~ 1 eV) which previously implied weak interactions and also high binding energies (? 3 eV) as are observed experimentally.  相似文献   

17.
We have carried out first-principle calculations of Mg adsorption on Si(111) surfaces. Different adsorption sites and coverage effects have been considered. We found that the threefold hollow adsorption is energy-favoured in each coverage considered, while for the clean Si(111) surface of metallic feature, we found that 0.25 and 0.5 ML Mg adsorption leads to a semiconducting surface. The results for the electronic behaviour suggest a polarized covalent bonding between the Mg adatom and Si(111) surface.  相似文献   

18.
《Surface science》2003,470(1-2):184-192
The coverage-dependent heats of adsorption and sticking probabilities in the interaction of nitric oxide with clean and oxygen pre-covered Ni{2 1 1} surfaces have been measured at 300 K using single crystal adsorption calorimetry. The results are consistent with a switch from dissociative to molecular chemisorption at 1 ML of O plus N adatoms. Initial dissociative adsorption is attributed to step sites with a heat of 400 kJ mol−1. When steps are saturated with adatoms, adsorption proceeds molecularly with a heat of 160 kJ mol−1. With 0.24 ML oxygen adatom pre-coverage, the initial heat is only 250 kJ mol−1 and with 0.6 ML oxygen adatom, NO adsorption is only molecular with an initial heat of 160 kJ mol−1. The NO sticking probability behaviour is consistent with this picture, with successive precursor mediated adsorption at step and terrace sites. The inhibition of dissociation above O, or O plus N, adatom coverages of 1 ML is attributed to the strong lateral repulsive interactions between adatoms, which would drive the dissociative heat of adsorption below that of molecular adsorption at higher coverages.  相似文献   

19.
The single hydrogen-like adatom chemisorption on transition metal surfaces is studied by using the generalized model Hamiltonian. This Hamiltonian includes the possibility of influence of the adatom orbital occupancy on the charge transfer between the adatom and the substrate metal. The correlation effects were included up to second order in V (the single particle coupling strength). The numerical calculations of the charge transfer between an adatom and a substrate metal, as well as the comparison with results obtained for the standard Newns-Anderson model indicate that this generalized Hamiltonian can be more efficient in describing the chemisorption process.  相似文献   

20.
Scanning tunneling microscopy (STM) was used to investigate the role of repulsive interactions in the adsorption and patterning of molecular bromine on the Si(100) surface. At room temperature and low coverage, chemisorption of bromine occurs dissociatively on the same side of adjacent dimers of the same row. Using the STM tip as a probe, we demonstrate the existence of repulsive interactions at adjacent sites on the Si(100)-2×1 surface. These repulsive interactions also contribute to the arrangement of adatoms on the surface. In particular, we report the presence of a stable c(4×2) surface phase that results after exposing the Si(100) surface to bromine under certain conditions. This phase involves adsorption on non-neighboring dimers and is stabilized by repulsive interactions that force bromine adatoms to occupy alternating dimers within rows with an out-of-phase occupancy between adjacent rows.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号