首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The homotopic method has been used to analyze the kinetic models of CO oxidation on two surface patches conjugated by COads spillover. On each patch reaction proceeds via a three-stage mechanism but with different constants. The stability of steady-states solution has been studied. COads spillover from one patch to another changes substantially the bifurcation picture of steady states and produces islands.  相似文献   

2.
The homotopic method has been used to analyze the kinetic model of three-stageCO oxidation on two nonuniform surface patches conjugated byCO 2 spillover. Diagrams of steady states depending on the portion of surface patchm 1 at various temperatures and pressure ratiosP(O 2)/P(CO) have been constructed. The ratios of different type patches corresponding to the maximum overall reaction rate have been found.  相似文献   

3.
The Monte Carlo method has been used to simulate CO oxidation on a lattice consisting of various alternating patches: M1, where s(CO)>s(O2) and M2, where s(CO)2). The reaction is shown to proceed over all the surface at low temperature as COads spillover from M1 to M2 and backwards.  相似文献   

4.
The kinetics of CO oxidation on heterophase surfaces composed of two different types of patches M1 and M2 is analyzed. The kinetic conjugation of the patches caused by COads spillover leads to the substantial change in reaction rate temperature dependences, as well as to the appearance of a low-temperature, superadditive activity.  相似文献   

5.
The mechanism of catalytic CO oxidation on Pt(100) and Pd(110) single-crystal surfaces and on Pt and Pd sharp tip (~103 Å) surfaces has been studied experimentally by temperature-programmed reaction, temperature desorption spectroscopy, field electron microscopy, and molecular beam techniques. Using the density functional theory the equilibrium states and stretching vibrations of oxygen atoms adsorbed on the Pt(100) surface have been calculated. The character of the mixed adsorption layer was established by high resolution electron energy loss spectroscopy—molecular adsorption (O2ads, COads) on Pt(100)-hex and dissociative adsorption (Oads, COads) on Pt(100)-(1×1). The origin of kinetic self-oscillations for the isothermal oxidation of CO in situ was studied in detail on the Pt and Pd tips by field electron microscopy. The initiating role of the reversible phase transition (hex) ? (1 × 1) of the Pt(100) nanoplane in the generation of regular chemical waves was established. The origination of self-oscillations and waves on the Pt(100) nanoplane was shown to be caused by the spontaneous periodical transition of the metal from the low-active state (hex) to the highly active catalytic state (1 × 1). A relationship between the reactivity of oxygen atoms (Oads) and the concentration of COads molecules was revealed for the Pd(110) surface. Studies using the isotope label 18Oads demonstrated that the low-temperature formation of CO2 at 150 K is a result of the reaction of CO with the highly reactive state of atomic oxygen (Oads). The possibility of the low-temperature oxidation of CO via interaction with the so-called “hot” oxygen atoms (Ohot) appearing on the surface at the instant of dissociation of O2ads molecules was studied by the molecular beam techniques.  相似文献   

6.
This article presents an analytical review of the author’s results and the literature concerning the nature of species resulting from NO and CO adsorption on the unreconstructed (1 × 1) and reconstructed hexagonal (hex) Pt(100) surfaces, including specific features of the reactions between these species. At 300 K, both surfaces adsorb NO and CO mainly in their molecular states. When adsorbed on Pt(100)-1 × 1, the NOads and COads molecules are uniformly distributed on the surface. Under the same conditions, the hexagonal surface undergoes adsorption-induced reconstruction with the formation of NOads/1 × 1 and COads/1 × 1 islands, which are areas of the unreconstructed phase saturated with adsorbed molecules and surrounded with the adsorbate-free hex phase. In adsorption on structurally heterogeneous surfaces containing both hex and 1 × 1 areas, the 1 × 1 and hex phases are occupied in succession, the latter undergoing reconstruction into the 1 × 1 phase. The reaction between NO and CO on the unreconstructed surfaces occurs even at room temperature and results in the formation of N2 and CO2 in quantitative yield. On the hexagonal surface, a stable layer of adsorbed molecules as (NOads + COads)/1 × 1 mixed islands forms under these conditions. Above 350 K, the reaction in the mixed islands is initiated by the desorption of small amounts of the initial compounds, and this is followed by rapid self-acceleration leading to a surface explosion yielding N2, CO2, and N2O (minor product). These products show themselves as very narrow desorption peaks in the temperature-programmed reaction spectrum.  相似文献   

7.
Infrared spectra of CO-treated platinum hydrosols subsequently treated with acetylene, hydrogen, and oxygen reveal that v(CO)ads decreases from 2070 cm−1 with increasing gas-treatment time. This has been attributed to a reduction in the coverage of adsorbed CO. In Pt sol/CO/C2H2 systems, v(CO)ads decreases to a limiting value of ca. 2060 cm−1 after exposure to acetylene. In the Pt sol/CO/H2 systems, v(CO)ads decreases to ca. 2050 cm−1 after exposure to hydrogen gas. The lower frequency in the Pt sol/CO/H2 system has been attributed to CO adsorption on more active metal sites formed from the reduction of surface platinum oxides. Exposure of the CO-treated platinum hydrosols to O2 gas was found to cause the eventual disappearance of the v(CO)ads band in infrared spectra, which was attributed to oxidation of adsorbed CO to CO2 by weakly bound surface layers of platinum oxides formed by the oxygen treatment.  相似文献   

8.
Variations of potential E in time , observed during the carbon monoxide interaction with preliminarily-adsorbed oxygen Oads on smooth and platinized platinum electrodes under open-circuit conditions (supporting electrolyte 0.5 M H2SO4), are measured. The potential decay rate on smooth Pt is more than ten times that on Pt/Pt; there are some differences in the transients as well. The obtained data suggest that CO interacts with Oads on smooth Pt and Pt/Pt via different mechanisms. Two models for the process on smooth platinum are considered. In one model, the interaction of Oads with CO from solution is accepted as the rate-determining step; in the other, the interaction of Oads with COads. A comparison of theoretical E vs. dependences with experimental data using the MathCad program suggests that CO interacts with Oads via both mechanisms.  相似文献   

9.
In our previous paper, the phenazine-like structure of the poly-o-phenylenediamine (PoPD) and its three steady redox states have been revealed mainly by using in situ resonance Raman spectroscopy. It has also been shown that the semi-oxidized state of PoPD is the most stable state of PoPD, while the totally-oxidized state of PoPD is chemically unstable and can exist only at certain electrode potentials. In the present work, the more detailed reaction mechanism of a PoPD film in strong acid solution has been studied by using in situ UV—vis substractive reflectance spectroscopy. The semi-oxidized state and the totally-oxidized state of PoPD have electronic absorption bands around 300 nm, 430 nm, 500 nm and 300 nm, 450 nm, 530 nm, 735 nm respectively in the in situ steady state UV—vis subtractive reflectance spectra with respect to the reduced state of PoPD, which verifies once again that three redox states of PoPD exist in the redox process of PoPD. Moreover, the relative intensity between two oxidized states of PoPD at the maximum absorption wavelength (λmax) reveals that only about one third of the semi-oxidized state of PoPD can be oxidized to the totally-oxidized state of PoPD. The in situ resonance Raman spectra and the cyclic voltammograms of PoPD display the same quantitative relationship. New absorption bands were observed in the in situ time-resolved UV—vis subtractive reflectance spectra with appropriate time resolutions, which illustrate the dynamic structure changes of PoPD in its redox process. These intermediate states of PoPD are more unstable than its three redox states.  相似文献   

10.
High resolution electron energy loss spectroscopy (HREELS), temperature-programmed desorption (TPD) and temperature-programmed reaction (TPR) were used to study NO adsorption and the reactivity of COads and NOads molecules on Pd(110) and Pt(100) single crystal surfaces. Compared to the Pt(100)-(1 × 1) surface, the unreconstructed Pt(100)-hex surface is chemically inert toward NO dissociation into Nads and Oads atoms. When a mixed adsorbed COads + NOads layer is heated, a so-called surface explosion is observed when the reaction products (N2, CO2, and N2O) synchronously desorb in the form of sharp peaks with a half-width of 7-20 K. The shape specificity of TPR spectra suggests that the vacancy mechanism consists of the autocatalytic character of the reaction initiated by the formation an initial concentration of active sites due to partial desorption of molecules from the COads + NOads layer upon heating to high temperatures. Kinetic experiments carried out on the Pd(110) surface at a constant reaction pressure and a linear increase in the temperature confirm the explosive mechanism of the reaction NO + CO.  相似文献   

11.
Areas of occurrence and character of autooscillations during CO oxidation on a non-uniform surface consisting of different sites M1 and M2, the reaction on which is kinetically connected by the diffusion of adsorbed CO (COads), has been analyzed using numerical integration of an independent system and search of stationary solutions by the homotopy method.  相似文献   

12.
Density functional theory method has been employed to investigate the adsorption of H2 molecule and H atom on α‐U(001) surface. There exist four initial sites [top (A), triangle‐center (B), long‐bridge (C), and short‐bridge (D)] for H2 and H atom adsorptions on α‐U(001) surface. The Eads (adsorption energy) values on the top sites of H2‐U(001) configurations are around ?0.666 eV, and H2 molecule has been elongated but not broken into H atoms. For the other three sites, the Eads values are around ?1.521 eV. The long‐bridge site is the most reactive site for H2 decomposing. For the H‐U(001) configurations, the Eads are around ?2.904 eV. Top site and short‐bridge site are the most reactive sites for the H atom react on the α‐U(001) surface. Our work reveals that the different reactive sites play discrepant effects on hydrogenation process. Geometric deformations, diffusion paths, and partial density of states of H2‐U(001) and H‐U(001) configurations have also been analyzed. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
CO oxidation on Pt(l00) is studied by the Monte Carlo method using a model that accounts for the phase transition (lxl) ai (hex). The influence of surface diffusion of COads on the velocity of wave propagation of Oads and COads and the distribution of the species in the reaction zone is studied Deceased.  相似文献   

14.
邓少君  郑欧  刘金彦  赵剑曦 《化学学报》2007,65(13):1212-1216
以FT-IR方法研究了水/C12-EOx-C12•2Br/正己醇/正庚烷形成的W/O微乳中水的状态. 结果表明, 其中的水存在4种状态, 分别为阳离子头基结合水、反离子结合水、类似本体的水以及束缚在微乳栅栏层中的水. 由解卷积技术分解FT-IR谱图, 进而获得每个表面活性剂分子对应于这4种状态水分子的数目nN+, nBr-, nbnf. 随着水含量(W0)增加, nb急剧增大, nN+少许上升, 而nfnBr-维持不变, 这说明微乳水核逐渐长大, 且在所考察W0范围内, 表面活性剂头基解离度保持不变.  相似文献   

15.
In this investigation, reaction channels of weakly bound complexes CO2HF, CO2HFH2O, CO2HFNH3, CO2HFCH3OH, CO2HFNH2CH3, CO2HFNH(CH3)2 and CO2HFN(CH3)3 systems were studied at the B3LYP/6-311++G(3df,2pd) level. The conformers of syn-fluoroformic acid or syn-fluoroformic acid plus a third molecule (H2O, NH3, CH3OH, NH2CH3, NH(CH3)2 or N(CH3)3) were found to be more stable than the conformers of the related anti-fluoroformic acid or anti-fluoroformic acid plus a third molecule (H2O, NH3, CH3OH, NH2CH3, NH(CH3)2 or N(CH3)3). However, the weakly bound complexes were found to be more stable than either the related syn- and anti- type fluoroformic acid or the acid plus third molecule (H2O, NH3, CH3OH, NH2CH3, NH(CH3)2 or N(CH3)3) conformers. They decomposed into CO2+HF, CO2+H3OF, CO2+NH4F, CO2+(CH3)OH2F, CO2+NH3(CH3)F, CO2+NH2(CH3)2F, or CO2+NH(CH3)3F combined molecular systems. The weakly bound complexes have seven reaction channels, each of which includes weakly bound complexes and their related systems. Moreover, each reaction channel includes two transition state structures. The transition state between the weakly bound complex and anti-fluoroformic acid type structure (T13) is significantly higher than that of internal rotation (T23) between the syn- and anti-FCO2H (or FCO2HH2O, FCO2HNH3, FCO2HCH3OH, FCO2HNH2CH3, FCO2HNH(CH3)2, or FCO2HN(CH3)3) structures. However, adding the third molecule H2O, NH3, CH3OH, NH2CH3, NH(CH3)2 or N(CH3)3 can significantly reduce the activation energy of T13. The catalytic strengths of the third molecules are predicted to follow the order H2O<NH3<CH3OH<.NH2CH3<NH(CH3)2<N(CH3)3.  相似文献   

16.
Time-dependent density functional theory (TD-DFT)/periodic DFT calculations were performed to determine the role of pro-aromatic organic D-A -π -A type dyes (the NL1-NL17 family) with Thieno[3,4-b]pyrazine (Tpy) as A acceptor group into dye-sensitized solar-cells (DSSC). This work presents a discussion of the ground and excited states of these dyes along with the aromaticity analysis and the electron injection step using a dye@(TiO2)72 model. The results suggest that the pro-aromatic behavior increases from the thiophene ring to the pyrazine when an acceptor π-bridge such as phenyl is used. This strong pro-aromaticity is also reflected in the electron injection step, studied using a 3x2 3 layer (TiO2)72 slab model. The resulting adsorption energies (ΔEads and ΔGads) and the electron injection (ΔGinject) in the stablest coordination mode, Bid_CN_COOH, indicate that the redox reaction (Dye* ➔ Dye+ + e) is stronger and more spon than the adsorption reaction (Dye+ + TiO2 [+e] ➔ Dye@TiO2) in the electron injection. In this way, the highest efficiency of NL6 and NL12 is a consequence of the more significant pro-aromatic characteristics and the more spontaneous redox process. Finally, these NL dyes are promising in the molecular engineering of D-A -π -A metal-free types dyes.  相似文献   

17.
Bulk Pt3Co and nanosized Pt3Co and PtCo alloys supported on high area carbon were investigated as the electrocatalysts for the COads and HCOOH oxidation. Pt3Co alloy with Co electrochemically leached from the surface (Pt skeleton) was employed to separate electronic from ensemble and bifunctional effects of Co. Cyclic voltammetry in 0.1 M HClO4 showed reduced amount of adsorbed hydrogen on Pt sites on Pt3Co alloy compared to pure Pt. However, no significant difference in hydrogen adsorption/desorption and Pt-oxide reduction features between Pt3Co with Pt skeleton structure and bulk Pt was observed. The oxidation of COads on Pt3Co alloy commenced earlier than on Pt, but this effect on Pt3Co with Pt skeleton structure was minor indicating that bifunctional mechanism is stronger than the electronic modification of Pt by Co. The HCOOH oxidation rate on Pt3Co alloy was about seven times higher than on bulk Pt when the reaction rates were compared at 0.4 V, i.e., in the middle of the potential range for the HCOOH oxidation. Like in the case of COads oxidation, Pt skeleton showed similar activity as bulk Pt indicating that the ensemble effect is responsible for the enhanced activity of Pt3Co alloy toward HCOOH oxidation. The comparison of COads and HCOOH oxidation on Pt3Co/C and PtCo/C with the same reaction on Pt/C were qualitatively the same as on bulk materials.  相似文献   

18.
The energetic pathways of adsorption and activation of carbon dioxide (CO2) on low-lying compact (TiO2)n clusters are systematically investigated by using electronic structure calculations based on density-functional theory (DFT). Our calculated results show that CO2 is adsorbed preferably on the bridge O atom of the clusters, forming a "chemisorption" carbonate complex, while the CO is adsorbed preferably to the Ti atom of terminal Ti-O. The computed carbonate vibrational frequency values are in good agreement with the results obtained experimentally, which suggests that CO2 in the complex is distorted slightly from its undeviating linear configuration. In addition, the analyses of electronic parameters, electronic density, ionization potential, HOMO-LUMO gap, and density of states (DOS) confirm the charge transfer and interaction between CO2 and the cluster. From the predicted energy profiles, CO2 can be easily adsorbed and activated, while the activation of CO2 on (TiO2)n clusters are structure-dependent and energetically more favorable than that on the bulk TiO2. Overall, this study critically highlights how the small (TiO2)n clusters can influence the CO2 adsorption and activation which are the critical steps for CO2 reduction the surface of a catalyst and subsequent conversion into industrially relevant chemicals and fuels.  相似文献   

19.
In this work, the electronic and structural properties of 3d and 4d transition metal (TM)-decorated graphyne (GY) (TM-GY) toward CO2 adsorption were studied using the D3-corrected density functional theory (DFT-D3) method. Then, CO2 capture and storage (CCS) of the most stable structures were investigated. Results show that the most stable site for all TM decoration is the center of the 12-membered ring with various distances from carbon plane, and GY decorated with Ni and Zn from 3d and Zr and Cd from 4d TMs are also the most and the least stable, energetically with Eb of −5.834, −0.467, −6.181, and −0.963 eV, respectively. Evaluation of the adsorption behavior of CO2 on TM-GY reveals that the strongest adsorption energies belong to Cr and Mo-GY (−1.502 and −1.117 eV, respectively), and for all 3d and 4d TMs, the horizontal direction of CO2 is more stable, energetically. Increasing CO2 molecules, step by step, on Cr and Mo-GY shows that they can hold 13 and 18 CO2 molecules with average Eads of −0.374 and −0.330 eV/CO2 and corresponding CO2 storage capacities of 47.66 and 54.10 wt%, respectively. These findings show that Cr and Mo-GY can be used in the future as suitable candidates for CCS applications.  相似文献   

20.
采用并流共沉淀法制备了不同Zr/Cd原子比(nZr/nCd)的ZrCdOx金属氧化物,并与水热法制备的不同硅铝比(nSiO_(2)/nAl_(2O3))的片状SAPO-18分子筛物理混合制得ZrCdOx/SAPO-18双功能催化剂,研究了其催化CO2加氢直接合成低碳烯烃性能。采用透射电子显微镜(TEM)、X射线衍射(XRD)、N2吸附-脱附、CO2程序升温脱附(CO2-TPD)、NH3程序升温脱附(NH3-TPD)和X射线光电子能谱(XPS)对催化剂进行了分析。与单一ZrO2相比,引入CdO使得ZrCdOx比表面积下降,当nZr/nCd=8时制备的Zr8Cd1氧化物呈现出无定形小颗粒状,Zr与Cd之间较强的协同作用使得Zr Cd Ox氧化物产生了更多的氧空位,有利于CO2的吸附活化。通过对Zr8Cd1金属氧化物与SAPO-18(硅铝比0.1)的质量比、工艺反应温度、压力和空速对催化性能影响的考察,获得了最佳反应条件。研究还发现,当SAPO-18的硅铝比从0.1降为0.01时,Br?nsted酸含量降低,产物中烯烃/烷烃物质的量之比从18.6提高至37.2,但副产物CO含量迅速增加,低碳烯烃时空收率明显下降。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号