首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This tutorial review surveys the wide variety of oligomeric hydroxide structures formed from aluminum, gallium, and indium. Both inorganic and ligand-supported structures are reviewed, providing a leading introduction to this research area. In addition to homometallic clusters comprising only one metal type, a series of heterometallic structures are described. This review highlights the synthesis and characterization of these nanoscale cluster compounds that have implications in a variety of fields, including catalysis, mineral mimicry, environmental chemistry, geochemistry, materials science, and semiconductors.  相似文献   

2.
羟基聚合铝的研究在环境化学中具有重要作用。自然条件下存在的无机单核铝本身具有毒性,而多核铝是比单核铝更毒的铝形态,它们很容易进入人体和植物产生毒害作用。因此,水解聚合铝形态研究一直是环境化学、地球化学和材料催化等众多研究领域的前沿热点课题。本文综述了在新环境材料开发中羟基聚合铝晶体研究的进展,对已获得表征的典型羟基聚合铝的结构特点进行了对比与评述,讨论了不同羟基聚合铝晶体的科学意义和应用价值。  相似文献   

3.
The convergence of our understanding of structure-property relationships for selected biological macromolecules and our increased ability to prepare large synthetic macromolecules with a structural precision that approaches that of proteins have spawned a new area of research where chemistry and materials science join with biology. While evolution has enabled nature to perfect processes involving energy transfer or catalysis by incorporating functions such as self-replication and repair, synthetic macromolecules still depend on our synthetic skills and abilities to mesh structure and function in our designs. Clearly, we can take advantage of our understanding of natural systems to mimic the structural features that lead to optimized function. For example, numerous biological systems make use of the concept of site isolation whereby an active center or catalytic site is encapsulated, frequently within a protein, to afford properties that would not be encountered in the bulk state. The ability of the dendritic shell to encapsulate functional core moieties and to create specific site-isolated nanoenvironments, and thereby affect molecular properties, has been explored. By utilizing the distinct properties of the dendrimer architecture active sites that have either photophysical, photochemical, electrochemical, or catalytic functions have been placed at the core. Applying the general concept of site isolation to problems in materials research is likely to prove extremely fruitful in the long term, with short-term applications in areas such as the construction of improved optoelectronic devices. This review focuses on the evolution of a natural design principle that contributes to bridging the gap between biology and materials science. The recent progress in the synthesis of dendrimer-encapsulated molecules and their study by a variety of techniques is discussed. These investigations have implications that range from the preliminary design of artificial enzymes, catalysts, or light-harvesting systems to the construction of insulated molecular wires, light-emitting diodes, and fiber optics.  相似文献   

4.
Combinatorial catalysis is the systematic preparation, processing, and testing of large diversities of chemically and physically different materials libraries in a high-throughput fashion. It also embodies microfabrication, robotics, automation, instrumentation, computational chemistry, and large-scale information management (informatics), and as such carries the promise of a renaissance in catalytic reaction engineering. Significant progress has already been made in demonstrating the speed and economic advantage of combinatorial approaches by the discovery of superior catalytic materials in a matter of hours and days, as opposed to the months and years required using traditional methods. Combinatorial methods can also significantly contribute to our understanding of catalytic function by increasing our chances of discovering totally new and unexpected catalytic materials, and by expediting the recognition of trends and patterns of structure-activity relations, from which new catalytic materials can be designed more efficiently. Combinatorial catalysis undoubtedly will be the new paradigm of catalysis research as the industry faces increasing global competition and pressure for the development of environmentally friendly processes at a time when resources for research are diminishing.  相似文献   

5.
Molecular self-diffusion coefficients (D) of species in solution are related to size and shape and can be used for studying association phenomena. Pulsed field gradient nuclear magnetic resonance (PFG-NMR) spectroscopy has been revealed to be a powerful analytical tool for D measurement in different research fields. The present work briefly illustrates the use of PFG-NMR for assessing the existence of interactions in very different chemical systems: organic and organometallic compounds, colloidal materials and biological aggregates. The application of PFG-NMR is remarkable for understanding the role of anions in homogenous transition metal catalysis and for assessing the aggregation behaviour of biopolymers in material science.  相似文献   

6.
The development of green and convenient methods for C–S bond formation has received significant attention because C–S bond widely occurs in many important pharmaceutical and biological compounds.Recently, visible-light photoredox catalysis has been established as an efficient and general tool for the construction of C–C and C-heteroatom bonds. In this review, we have focused on the research on recent advances in C–S bond formation via visible-light photoredox catalysis, and the growing opportuni...  相似文献   

7.
Green Chemistry has become in the last two decades an increasing part of research interest. Nonconventional «green» sources for chemical reactions include micro-wave, mechanical mixing, visible light and ultrasound. 1,2,3-triazoles have important applications in pharmaceutical chemistry while their 1,2,4 counterparts are developed to a lesser extent. In the review presented here we will focus on synthesis of 1,2,3 and 1,2,4-triazole systems by means of classical and « green chemistry » conditions involving ultrasound chemistry and mechanochemistry. The focus will be on compounds/scaffolds that possess biological/pharmacophoric properties. Finally, we will also present the formal cycloreversion of 1,2,3-triazole compounds under mechanical forces and its potential use in biological systems.  相似文献   

8.
This article provides a concise summary of alkaline earth metal nitrogen chemistry. This important area of s-block metal chemistry is shedding important light on the recent development of alkaline earth metal chemistry, as the preparation of the target compounds utilizes a large variety of synthetic methodology. Further, the compounds have been utilized in a range of applications, including polymerization initiation, catalysis, as solid-state precursors, and even high energy materials.  相似文献   

9.
In recent years, chemistry of metal-nitrogen–bonded compounds have attracted tremendous attention mainly because of unusual properties resulting from such a bond involving carbon and other heteroatoms. M?N–bonded compounds, when containing group VI elements, especially selenium, has attracted great attention in materials chemistry. In addition, the increased interest in synthesis of N-containing bioactive compounds with other heteroatoms such as selenium, sulfur, etc is mainly because of their tremendous potential as antioxidants, additives, dyes for polymers, and as insecticides, in solvent extraction, and in nanotechnology. Thus, the synthesis and applications of 1,2,3-selenadiazoles have attracted recent interest of materials scientists, including nanotechnologists, pharmaceutical chemists, and organic chemists. The chemistry of 1,2,3-selenadiazoles is highly rich and has been practiced ever since its first report in 1972. Such N-containing Se-heterocycles form several types of selenadiazoles that are a rich source of selenium for semiconductor nanoparticles of metal selenides. The materials chemistry of such molecules has been documented for over three decades, and their great scope in semiconductors has emerged. This review article is an attempt to bring a variety of materials and biological application of 1,2,3-selenadiazoles for better understanding of the researchers.  相似文献   

10.
梅雷  石伟群 《化学通报》2020,83(5):387-393
锕系超分子化学是锕系元素化学的重要研究领域,可以为乏燃料后处理的配位化学基础研究提供重要信息,并为探索锕系功能材料在发光、传感、催化和分离等方面的功能应用提供关键材料体系。本文介绍了基于锕系金属离子的金属-有机超分子组装体这一新兴领域的最新研究进展。从锕系超分子组装体的构筑原理出发并结合笔者自身研究情况,对基于主客体准轮烷配体的锕系-轮烷配位聚合物、具有闭合结构的锕系配位组装体和基于超分子相互作用的锕系超分子聚合物这三类典型的锕系超分子组装体的研究进展进行了梳理和总结阐述。期望为未来新型锕系超分子组装体的设计合成提供参考,促进相关领域的进步和发展。  相似文献   

11.
水解聚合铝形态一直是分析、催化、土壤、地球化学、新材料、环境科学和生物毒理学等众多领域研究的前沿和热点。Keggin结构的Al30形态是迄今为止发现的电荷最高的水解铝聚合阳离子,具有独特的分子结构和纳米分子尺寸,它对催化化学、新型功能材料、高效絮凝剂的开发以及铝的水解聚合转化规律研究具有重要意义。本文主要论述了Al30形态的形成、形态分析方法、结构模型以及形成机理等方面的最新研究进展,并对水解聚合铝溶液的研究发展趋势进行了展望。  相似文献   

12.
栾兆坤  陈朝阳  李燕中 《化学进展》2005,17(6):1034-1040
水解聚合铝形态一直是分析、催化、土壤、地球化学、新材料、环境科学和生物毒理学等众多领域研究的前沿和热点。Keggin 结构的Al30 形态是迄今为止发现的电荷最高的水解铝聚合阳离子,具有独特的分子结构和纳米分子尺寸,它对催化化学、新型功能材料、高效絮凝剂的开发以及铝的水解聚合转化规律研究具有重要意义。本文主要论述了Al30形态的形成、形态分析方法、结构模型以及形成机理等方面的最新研究进展,并对水解聚合铝溶液的研究发展趋势进行了展望。  相似文献   

13.
Organometallic chemistry and biochemistry have been merged in the last two decades into a new field: bioorganometallic chemistry. This new research area was devoted to the synthesis of new organometallic compounds and their biological and medical effects against some types of diseases, such as cancer and malaria. For several years, the use of ferrocene in bioorganometallic chemistry has been growing rapidly, and several promising applications have been developed since ferrocene is a stable, nontoxic compound and has good redox properties. This review will focus on ferrocenyl compounds which have been biologically evaluated against certain diseases. This area has attracted many researchers due to the promising results of some ferrocene compounds in the medicinal applications. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

14.
The path of chemistry in the future will be determined both by its participation in solving large-scale societal problems and by its generation of new ideas through basic research. This article sketches four of the areas of societal “pull” in which chemistry will play a role in solving applied problems—national security, health care, the environment, and energy—and four areas in which basic research will be especially fruitful—materials chemistry, biological chemistry, computational chemistry, and chemistry exploring the limits of size and speed in chemical phenomena.  相似文献   

15.
A key reaction in the biological and material world is the controlled linking of simple (molecular) building blocks, a reaction with which one can create mesoscopic structures, which, for example, contain cavities and display specifically desired properties, but also compounds that exhibit typical solid-state structures. The best example in this context is the chemistry of host–guest interactions, which spans the entire range from three- and two-dimensional to one- and “zero-dimensional”, discrete host structures. Members of the class of multidimensional compounds have been classified as such for a long time, for example, clathrates and intercalation compounds. Thus far, however, there are no classifications for discrete inorganic host–guest compounds. The first systematic approach can be applied to novel polyoxometalates, a class of compounds which has only recently become known. Molecular recognition; tailor-made, molecular engineering; control of fragment linkage of spin organization and crystallization; cryptands and coronands as “cages” for cations, anions or anion–cation aggregates as sections of ionic lattices; anions within anions, receptors; host–guest interactions; complementarity, as well as the dialectic terms reduction and emergence are important terms and concepts of supramolecular inorganic chemistry. Of particular importance for future research is the comprehension of the mesoscopic area (molècular assemblies)—that between individual molecules and solids (“substances”)—which acts in the biological world as carrier of function and information and for which interesting material properties are expected. This area is accessible through certain variations of “controlled” self-organization processes, which can be demonstrated by using examples from the chemistry of polyoxometalates. The comprehension of the laws that rule the linking of simple polyhedra to give complex systems enables one to deal with numerous interdisciplinary areas of research: crystal physics and chemistry, heterogeneous catalysis, bioinorganic chemistry (biomineralization), and materials science. In addition, conservative self-organization processes, for example template-directed syntheses, are of importance for natural philosophy in the context of the question about the inherent properties of material systems.  相似文献   

16.
One should not underestimate the capability of the combinatorial method in solid-state chemistry; this is the opinion of the author. Combinatorial chemistry can provide a large number of new compounds, but once the components that are interesting for a certain application have been successfully selected, the techniques of conventional catalysis and materials research are required. The strengths of conventional chemistry lie in the optimization, systematic modification, and improvement of new lead structures. In contrast, discovery is the potential strength of combinatorial chemistry. Careful design is most important for the synthesis of useful libraries, since the diversity of the periodic table is much too large to be accessed comprehensively or systematically by such large libraries.  相似文献   

17.
水解聚合铝形态一直是分析、催化、土壤、地球化学、新材料、环境科学和生物毒理学等众多领域研究的前沿和热点。Keggin 结构的Al30 形态是迄今为止发现的电荷最高的水解铝聚合阳离子,具有独特的分子结构和纳米分子尺寸,它对催化化学、新型功能材料、高效絮凝剂的开发以及铝的水解聚合转化规律研究具有重要意义。本文主要论述了Al30形态的形成、形态分析方法、结构模型以及形成机理等方面的最新研究进展,并对水解聚合铝溶液的研究发展趋势进行了展望。  相似文献   

18.
In Portugal, publications with mechanochemical methods date back to 2009, with the report on mechanochemical strategies for the synthesis of metallopharmaceuticals. Since then, mechanochemical applications have grown in Portugal, spanning several fields, mainly crystal engineering and supramolecular chemistry, catalysis, and organic and inorganic chemistry. The area with the most increased development is the synthesis of multicomponent crystal forms, with several groups synthesizing solvates, salts, and cocrystals in which the main objective was to improve physical properties of the active pharmaceutical ingredients. Recently, non-crystalline materials, such as ionic liquids and amorphous solid dispersions, have also been studied using mechanochemical methods. An area that is in expansion is the use of mechanochemical synthesis of bioinspired metal-organic frameworks with an emphasis in antibiotic coordination frameworks. The use of mechanochemistry for catalysis and organic and inorganic synthesis has also grown due to the synthetic advantages, ease of synthesis, scalability, sustainability, and, in the majority of cases, the superior properties of the synthesized materials. It can be easily concluded that mechanochemistry is expanding in Portugal in diverse research areas.  相似文献   

19.
The development of new solid catalysts for use in industrial chemistry has hitherto been based to a large extent upon the empirical testing of a wide range of different materials. In only a few exceptional cases has success been achieved in understanding the overall, usually very complex mechanism of the chemical reaction through the elucidation of individual intermediate aspects of a heterogeneously catalyzed reaction. With the modern approach of combinatorial catalysis it is now possible to prepare and test much more rapidly a wide range of different materials within a short time and thus find suitable catalysts or optimize their chemical composition. Our understanding of the mechanisms of reactions catalyzed by these materials must be developed, however, by spectroscopic investigations on working catalysts under conditions that are as close as possible to practice (temperature, partial pressures of the reactants, space velocity). This demands the development and the application of new techniques of in situ spectroscopy. This review will show how this objective is being achieved. By the term in situ (Lat.: in the original position) is meant the investigation of the chemical reactions which are taking place as well as the changes in the working catalysts directly in the spectrometer.  相似文献   

20.
The simplest heteroferrocene, azaferrocene, was first described in 1964, and until recently, the chemistry of these compounds has remained largely unexplored. This review will focus on recent advances in the chemistry of azaferrocenes including methods of azaferrocene synthesis and functionalization. The electrochemical behavior of azaferrocenes and their applications in catalysis and biology will also be emphasized here.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号