首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
The polychelates of Ti(III), VO(IV), Cr(III), Mn(III), Fe(III), Zr(IV), MoO2(VI) and UO2(VI) with the chelating hydrazone derived from 2,4-dihydroxy-5-acetylacetophenone and carbohydrazide have been synthesized. The polychelates have been characterized on the basis of elemental analyses, IR, magnetic moment, electronic spectral data and thermal analysis. Various kinetic parameters have been determined from the thermal data and decomposition follows first order kinetics. The solid—state electrical conductivity has been measured over 40–130°C-temperature range and all the compounds showed semiconducting behavior as their conductivity increases with increase in temperature. The ligand and its polychelates have also been screened for their antimicrobial activities using various microorganisms and all of them were found to be active against the organisms.  相似文献   

2.
New unsymmetrical Schiff base ligand (H2L) is prepared via condensation of 2-hydroxy-5-methyl acetophenone, 2-hydroxy-5-chloro-3-nitro acetophenone and carbohydrazide in 1:1:1 ratio. Metal complexes of VO(IV), Cr(III), Mn(III), Fe(III), Zr(IV), MoO2(VI), WO2(VI) and UO2(VI) have been prepared. These complexes were characterized by elemental analysis, UV–Vis and IR spectroscopy and magnetic moment and thermogravimetric analysis. The purity of the ligand and the metal complexes is confirmed by microanalyses, while unsymmetrical nature of ligand was further corroborated by 1H NMR. All the complexes are air stable and insoluble in water and common organic solvents but fairly soluble in DMSO. The elemental analysis shows 1:1 metal to ligand stoichiometry for all the complexes. Thermal behaviour of the complexes was studied, the complexes were found to be quite stable and their thermal decomposition was generally via partially loss of the organic moiety and ended with respective metal oxide as a final product. Comparison of the IR spectrum of ligand and its metal complexes confirm that Schiff base behave as a dibasic tetradentate ligand towards the central metal ion with an ONNO donor sequence. The dc electrical conductivity is studied and data obtained obeyed the relation σ = σ 0 exp(−E a/kT) over the temperature range 40–130 °C. X-ray diffraction study of VO(IV) complex shows its crystalline nature with triclinic crystal system.  相似文献   

3.
The synthesis of a new Schiff base derived from 2-hydroxy-5-chloroacetophenone and 4-amino-5-mercapto-3-methyl-1,2,4-triazole and its coordination compounds with Ti(III), VO(IV), Cr(III), Mn(III), Fe(III), Zr(IV), MoO2(VI), and UO2(VI) are described. The ligand and the complexes have been characterized on the basis of analytical, electrical conductance, molecular weight, IR and electronic spectra, magnetic susceptibility measurements, and thermogravimetric analysis. The ligand acts as a dibasic tridentate molecule. Antibacterial activities of the ligand and its metal complexes have been determined by screening the compounds against E. coli, S. typhi, P. aeruginosa, and S. aureus. The solid state de electrical conductivity of the ligand and its complexes have been measured over 313–403 K, and the complexes were found to be of semiconducting nature. The article was submitted by the authors in English.  相似文献   

4.
The transition metal complex of Mn(II), Co(II), Ni(II), Cu(II), Ti(III), Cr(III), Fe(III), Zr(IV), and UO2(VI) ion with a Schiff’s base ligand derived from 2-hydroxy-[2-oxo-1,2-dihydro-3H-indol-3-ylidene]-benzohydrazide have been prepared. The complexes have been characterized by elemental analysis data, IR and electronic absorption spectra, magnetic moments, and thermogravimetric analysis data. The complexes of the 1: 1 metal-to-ligand stoichiometry have been formed. The physico-chemical data have suggested the octahedral geometry for all the complexes except for Cu(II); the Cu(II) complex has been square planar. Thermal analysis data of the ligand and its complexes have been analyzed, and the kinetic parameters have been determined using the Horowitz–Metzger method. According to the solid-state electrical conductivity measurements, the ligand and its complexes are semiconducting in nature. The antimicrobial activity of the ligand and the complexes towards E. coli, S. typhi, P. aeruginosa, and S. aureus has been tested by the disc diffusion method.  相似文献   

5.
New complexes of MoO2(VI), WO2(VI), Th(IV) and UO2(VI) with aroyl hydrazones have been prepared and characterized by various physicochemical methods. Elemental analysis suggested 1 : 1 metal : ligand stoichiometry for MoO2(VI), WO2(VI), and UO2(VI) complexes whereas 1 : 2 for Th(VI) complexes. The physicochemical studies showed that MoO2(VI), Th(IV) and UO2(VI) complexes are octahedral. The electrical conductivity of these complexes lies in the range 1.00 × 10−7−3.37 × 10−11Ω−1 cm−1 at 373 K. The complexes were found to be quite stable and decomposition of the complexes ended with respective metal oxide as a final product. The thermal dehydration and decomposition of these complexes were studied kinetically using both Coats-Redfern and Horowitz-Metzger methods. It was found that the thermal decomposition of the complexes follow first order kinetics. The thermodynamic parameters of the decomposition are also reported. The biological activities of ligands and their metal complexes were tested against various microorganisms.  相似文献   

6.
The stable complexes of VO(IV), Cr(III), Mn(III), Fe(III), MoO2(VI), and WO2(VI), with an unsymmetrical tetradentate Schiff base ligand derived from 2-hydroxy-5-methylacetophenone, 2-hydroxy-5-chloroacetophenone and carbohydrazide were synthesized and characterized by the elemental analysis, UV-Vis and IR spectroscopy, magnetic measurements and thermal analysis. The VO(IV) and Mn(III) complexes were tested for the catalytic oxidation of styrene. The conversion of styrene increases with use of VO(IV) catalyst and decreases with use of Mn(III) catalyst.  相似文献   

7.
The La(III) and Th(IV) complexes have been synthesized by reacting La(III) and Th(IV) nitrate with the Schiff base derived from thiocarbohydrazide and thiophene-2-aldehyde. These complexes are soluble only to a larger extent in DMF and DMSO. The observed molar conductance values indicate that they are non-electrolytes. The elemental analyses of the complexes and confined to the stoichiometry of the type La.L.(NO3)3H2O and Th.L.(NO3)4. Further, the complexes have been characterized by the spectral and thermogravimetric data. The solid state d.c. electrical conductivity of the La(III) and Th(IV) complexes has been investigated from room temperature to 205 °C; which indicates the electrical conductivity increases with increase in temperature. Hence, La(III) and Th(IV) complexes were considered as semiconductors. Fluorescence spectra of the Schiff base and its Th(IV) complex were investigated in various solvents; the Schiff base and its metal complexes were evaluated for their antimicrobial activity.  相似文献   

8.
Mono- and binuclear VO(IV), Ce(III), Th(IV) and UO2(VI) complexes of thiosemicarbazone, semicarbazone and thiocarbohydrazone ligands derived from 4,6-diacetylresorcinol were synthesized. The structures of these complexes were elucidated by elemental analyses, IR, UV–vis, ESR, 1H NMR and mass spectra as well as conductivity and magnetic susceptibility measurements and thermal analyses. The thiosemicarbazone (H4L1) and the semicarbazone (H4L2) ligands behave as dibasic pentadentate ligands in case of VO(IV) and UO2(VI) complexes, tribasic pentadentate in case of Ce(III) complexes and monobasic pentadentate in case of Th(IV) complexes. However, the thiocarbohydrazone ligand (H3L3) acts as a monobasic tridentate ligand in all complexes except the VO(IV) complex in which it acts as a dibasic tridentate ligand. The antibacterial and antifungal activities were also tested against Rhizobium bacteria and Fusarium-Oxysporium fungus. The metal complexes of H4L1 ligand showed a higher antibacterial effect than the free ligand while the other ligands (H4L2 and H3L3) showed a higher effect than their metal complexes. The antifungal effect of all metal complexes is lower than the free ligands.  相似文献   

9.
Complexes derived from ampicillin (L1) and amoxicillin (L2) with (Mg(II), Ca(II), Zn(II), Cu(II), Ni(II), Co(II), Ce(III), Nd(III), UO2(VI), Th(IV)) were prepared and characterized by elemental analysis, electrical conductivity measurements, magnetic susceptibility, IR, UV/Vis, and thermogravimetry. The formed complexes can be formulated as (ML(H2O)3(NO3) n ) except for Ce(III) which gave (CeL(H2O)3(Cl)2). The 1H NMR spectra of the Zn(II) complexes are compared to spectra of the ligands. The shift (δ) gave information about the chelating center of the ligands. The ligands and the synthesized complexes, derived from some alkali earth and transition metal ions, were tested as antibacterial reagents. The formed complexes had enhanced activity.  相似文献   

10.
A new series of metal complexes of Ti(IV), V(IV), Y(III), Zr(IV), Ce(IV) and U(VI) with levofloxacin (Levo) were synthesized and characterized by elemental analysis, molar conductivity, magnetic moment measurements, UV–Vis, FT-IR and 1H NMR, XRD as well as TG-DTG techniques. The data indicated that levofloxacin reacts as a bidentate ligand chelate to the metal ion through the pyridone oxygen and one carboxylato oxygen. The thermal dehydration and decomposition of the complexes were studied kinetically using Coats–Redfern and Horowitz–Metzger methods, and the thermodynamic data reflected the thermal stability for all complexes. The calculated bond length and the bond stretching force constant, F(U=O), values for UO2 bond are 1.86 Å and 690.67 N m?1. The biological activities of the levofloxacin, meta-salts and their metal complexes were assayed against different bacterial and fungal species as well as their effect on degradation of calf thymus DNA.  相似文献   

11.
UO2(VI), Sn(IV), Th(IV) and Li(I) complexes of 4-azomalononitrile antipyrine (L) have been isolated and characterized based on IR spectra, 1H NMR, elemental analyses, molar conductance and thermal analysis (DTA/TG). The study revealed that the ligand behaves as a neutral bidentate one and coordination takes place via the carbonyl atom of pyrazolone ring >C=O and the azomethine nitrogen >C=N. The thermal stability of the metal complexes were investigated by thermogravimetry (TG), differential thermal analysis (DTA) techniques and infrared spectra, and correlated to their structure. The thermal study revealed that Th(IV) complexes show lower thermal stability than both UO2(VI) and Sn(IV) complexes.  相似文献   

12.
S. Koch  G. Ackermann  G. Winkler 《Talanta》1979,26(9):821-826
Two model systems and three analytical procedures based on them have been investigated analytically and characterized statistically with the aim of evaluating the application of ternary complexes in photometry. From measurements on the systems Ti(IV), Tiron (TiR8?3, procedure I), Ti(IV), Tiron, EDTA (TiR8?3, procedure II), Ti(IV), Tiron, EDTA [TiO(HY)R5?, procedure III], the molar absorptivities, standard deviations, coefficients of variation, calibration data, limits of detection and determination have been calculated, and the possible interferences of 45 ions have been examined. Procedure III is shown to be the least sensitive of the three, but to offer a higher selectivity towards titanium in the presence of Cr(III), Cu(II), Fe(III), Mn(II), Mo(VI), Ni(II), U(VI) and W(VI). The reasons for this are discussed, and some suggestions are offered concerning the intended application of ternary complexes.  相似文献   

13.
A series of organotin(IV) thiocarboxylates have been synthesized with the general formula R2SnL2 and R3SnL (R = Ph2(I), Me3(II), n‐Bu3(III), Ph3(IV), Cy3(V), Me2(VI), n‐Bu2(VII), and L = piperidine‐1‐thiocarboxylic acid) in anhydrous toluene under the reflux conditions. The complexes were characterized by microanalysis, IR, 1H and 13C NMR, mass spectrometry, and XRD. NMR data revealed that thiocarboxylic acid acts as bidentate, and complexes exhibit the four‐coordinated geometry in solution state. In solid state, diorganotin complexes exhibit the hexa‐coordinated geometry whereas the triorganotin(IV) compounds show the five‐coordinated geometry. These complexes were also tested for their antimicrobial activity along with the ligand against different animals, plant pathogens, and Artemia salina. All complexes with few exceptions show high activity as compared to the ligand. © 2007 Wiley Periodicals, Inc. Heteroatom Chem 18:664–674, 2007; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/hc.20380  相似文献   

14.
Salicylidene-o-aminobenzothiol and its 5-chloro and 5-bromo derivatives, dibasic tridentate Schiff bases, dervied from the condensation of o-aminothiol and Salicylaldehyde, 5-chloro salicylaldehyde and 5-bromo salicylaldehyde, were used for coordination with Zr(IV), Th(IV) and UO2(VI) metal inos. The I:I (metal-ligand) stoichiometry of these complexes is shown by elemental analysis and conductometric titrations. Molecular structure of these complexes are proved by Infra-red spectroscopy and thermogravimetric analysis. Magnetic susceptibility measurements of Zr(IV), Th(IV) and UO2(VI) complexes show their diamagnetic and octahedral geometry. Results show that all the complexes have solvent molecules in coordination with metal ion.  相似文献   

15.
Nine new mononuclear Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II), Th(IV) and UO2(VI) complexes of lomefloxacin drug were synthesized. The structures of these complexes were elucidated by elemental analyses, IR, XRD, UV–vis, 1H NMR as well as conductivity and magnetic susceptibility measurements and thermal analyses. The dissociation constants of lomefloxacin and stability constants of its binary complexes have been determined spectrophotometrically in aqueous solution at 25 ± 1 °C and at 0.1 M KNO3 ionic strength. The discussion of the outcome data of the prepared complexes indicate that the lomefloxacin ligand behaves as a neutral bidentate ligand through OO coordination sites and coordinated to the metal ions via the carbonyl oxygen and protonated carboxylic oxygen with 1:1 (metal:ligand) stoichiometry for all complexes. The molar conductance measurements proved that the complexes are electrolytes. The powder XRD study reflects the crystalline nature for the investigated ligand and its complexes except Mn(II), Zn(II) and UO2(II). The geometrical structures of these complexes are found to be octahedral. The thermal behaviour of these chelates is studied where the hydrated complexes lose water molecules of hydration in the first steps followed by decomposition of the anions, coordinated water and ligand molecules in the subsequent steps. The activation thermodynamic parameters are calculated using Coats–Redfern and Horowitz–Metzger methods. A comparative study of the inhibition zones of the ligand and its metal complexes indicates that metal complexes exhibit higher antibacterial effect against one or more bacterial species than the free LFX ligand. The antifungal and anticancer activities were also tested. The antifungal effect of almost metal complexes is higher than the free ligand. LFX, [Co(LFX)(H2O)4]·Cl2 and [Zn(LFX)(H2O)4]·Cl2 were found to be very active with IC50 values 14, 11.2 and 43.1, respectively. While, other complexes had been found to be inactive at lower concentration than 100 μg/ml.  相似文献   

16.
Extraction of Mo(VI) by 4-(5-nonyl)pyridine (NPy) in benzene from mineral acid solutions containing thiocyanate ions has been investigated at room temperature (23±2°C). From mineral acid (HCl, HNO3, and H2SO4) solutions alone Mo(VI) is not extracted quantitatively while the presence of small amounts of KSCN in the system augments the extraction by a large factor. Stoichiometric studies indicate that ion-pair type complexes (NPyH)2·[MoO2(SCN)4] are responsible for the extraction. Separation factors determined at fixed extraction conditions (0.1M Npy/C6H6–0.1M acid +0.2M KSCN) reveal that Ag(I), Cu(II), Co(II), Zn(II), Hg(II) and U(VI) are co-extracted while a clean separation from alkali metals, alkaline earths and some transition metals like Ln(III), Zr(IV), Hf(IV), Cr(III), Cr(VI) and Ir(III) is possible. Some of the complexing anions like oxalate, citrate, acetate, thiosulfate or ascorbate do not affect the degree of extraction of Mo(VI) allowing it to be recovered from diverse matrices.  相似文献   

17.
Formation constants (logK MAL MA) of the mixed complexes of the type M–A–L (where M=Mn(II), Co(II), Ni(II), Cu(II), Ce(III), Th(IV), and UO2(II); A=oxine and L=sulphamerazine or sulphadiazine) have been determined pH-metrically in 60% (v/v) ethanol–water mixture at 25°C and constant ionic strength (μ=0.1 M NaCl). The mode of chelation was ascertained by conductivity measurements. The stability sequence with respect to metal ions have been found to be Cu(II)>Ni(II)>Co(II)>Mn(II) and Th(IV)>UO2(II)>Ce(III). CuAL ternary solid complexes have been prepared and characterized on the basis of elemental analysis and IR-spectroscopy. The thermal degradations of the prepared complexes are discussed in an attempt to assign the intermediate compounds formed. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

18.
A series of Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II), La(III), Ru(III), Hf(IV), Zr(IV) and U(VI) complexes of phenylamino acetoacetylacetone hydrazone have been synthesized and characterized by elemental analyses, IR, UV–Vis, magnetic moments, conductances, thermal analyses (DTA and TGA) and ESR measurements. The IR data show that the ligand is neutral bidentate, monobasic bidentate, monobasic tridentate or dibasic tridentate towards the metal ion. Molar conductances in DMF indicate that the complexes are non-electrolytes. The ESR spectra of solid [(L)(HL)Cu2(NO3)(H2O)]·1/2H2O (10) and [(H2L)Cu(Cl)2(H2O)2] (11) show axial spectra with g >?g >?2.0023 indicating d(x²???y²) ground state with significant covalent bond character. However, [(HL)2Mn2(Cl)2(H2O)4·H2O (13) shows an isotropic spectrum, indicating manganese(II) to be octahedral. Antibacterial and antifungal tests of the ligand and some of its metal complexes revealed that the complexes are more potent bactericides and fungicides than the ligand.  相似文献   

19.
Novel monobasic tridentate ONS donor ligand (HL) was synthesized from the condensation reaction of chromone-3-carboxaldehyde with S-benzyldithiocarbazate (SBDTC). Reaction of the ligand with the metal ions copper(II), nickel(II), cobalt(II), oxidovanadium(IV), cerium(III), manganese(II), zinc(II), and cadmium(II) afforded dimeric complexes with the general formula [ML(Y)m(H2O)x]2·(Y)m·nH2zCH3OH, Y?=?NO3 or Cl, m?=?0–2, x?=?0–2, n?=?0–2, and z?=?0–1 for all complexes except oxidovanadium(IV) complex which has the formula [VOL(H2O)]2(SO4). Structures of the ligand and its metal complexes were established through elemental, spectroscopic data (FT-IR, UV-Vis, and mass), thermal analyses, as well as conductivity and magnetic susceptibility measurements. The geometrical structures of the metal complexes are octahedral and square planar. The ligand and its complexes were subjected to in vitro bioassays against the gram-negative and gram-positive bacteria and the fungus strain with good results for some of these compounds. The antitumor activity of the ligand and its copper(II) and oxidovanadium(IV) complexes were investigated against HepG2 cell line. The molecular parameters of the ligand and its metal complexes have been calculated on the basis of DFT level implemented in the Gaussian 09 program, and computed data were correlated with the experimental results. The HOMO→LUMO electron transition potentially occurs from S-benzyldithiocarbazate to chromone moieties with 4.048?eV. The Mn(II) complex has the highest value of energy barrier, while Cu(II) complex has the lowest value among the complexes. All synthesized complexes have energy gap lower than free ligand and therefore these complexes are more reactive than the free ligand.  相似文献   

20.
New complexes of a Schiff base derived from 2-hydroxy-5-chloroacetophenone and glycine with Mn(II), Fe(II), Co(II), Ni(II), Cu(II), Zn(II), Cd(II), and UO2(VI) have been synthesized. The ligand and the complexes have been characterized on the basis of analytical data, electrical conductance, IR, ESR, and electronic spectra, magnetic susceptibility measurements and thermogravimetric analysis. The ligand acts as a dibasic tridentate (ONO) donor molecule in all the complexes except the Zn(II) complex, where it acts as a monobasic bidentate (OO) donor. Antibacterial activities of the ligand and its metal complexes have been determined by screening the compounds against various Gram(+) and Gram(−) bacterial strains. The solid state d.c. electrical conductivity of the ligand and its complexes has been measured over 313–398 K and the complexes were found to be of semiconducting nature. The article is published in the original.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号