首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到4条相似文献,搜索用时 0 毫秒
1.
A nonlinear and nonisothermal two-dimensional general rate model is formulated and approximated numerically to allow quantitatively analyzing the effects of temperature variations on the separations and reactions in liquid chromatographic reactors of cylindrical geometry. The model equations form a nonlinear system of convection-diffusion-reaction partial differential equations coupled with algebraic equations for isotherms and reactions. A semidiscrete high-resolution finite volume method is modified to approximate the system of partial differential equations. The coupling between the thermal waves and concentration fronts is demonstrated through numerical simulations, and important parameters are pointed out that influence the reactor performance. To evaluate the precision of the model predictions, consistency checks are successfully carried out proving the accuracy of the predictions. The results allow to quantify the influence of thermal effects on the performance of the fixed beds for different typical values of enthalpies of adsorption and reaction and axial and radial Peclet numbers for mass and heat transfer. Furthermore, they provide useful insight into the sensitivity of nonisothermal chromatographic reactor operation.  相似文献   

2.
A non-equilibrium and non-isothermal two-dimensional lumped kinetic model (2?D-LKM) is formulated and analytically solved to study the influence of temperature variations along the axial and radial coordinates of a liquid chromatographic column. The model includes convection-diffusion partial differential equations for mass and energy balances in the mobile phase coupled with differential equations for mass and energy in the stationary phase. The solutions are derived analytically through sequential implementation of finite Hankel and Laplace transformations using the Dirichlet inlet boundary conditions. The coupling between the thermal waves and concentration fronts is demonstrated through numerical simulations and important parameters are recognized that influence the column performance. For a more comprehensive study of the considered model, numerical temporal moments are obtained from the derived solutions. Several case studies are conducted and validity ranges of the derived analytical solutions are identified. The current analytical results will play a major role in the improvements of non-equilibrium and non-isothermal liquid chromatographic processes.  相似文献   

3.
Abstract

A two-dimensional general rate model of non-isothermal reactive column chromatography is formulated considering homogenous and heterogeneous reaction rates, slow rates of adsorption–desorption kinetics, and enthalpies of adsorption and reaction. The model is expressed by a system of six nonlinear partial differential equations (PDEs) coupled with algebraic expressions for the adsorption and reaction rates. The nonlinearity of adsorption isotherm and reaction term hinders the derivation of analytical solutions. For that reason, a flux-limiting high-resolution finite volume scheme is suggested to numerically approximate the model equations. The effects of several kinetic and thermodynamic parameters are rigorously analyzed on the reactant conversion and components separation.  相似文献   

4.
The microscopic model of chromatography is a stochastic model that consists of two fundamental processes: (i) the random migration of the molecules in the mobile phase, and (ii) the random adsorption-desorption of molecules on the stationary phase contained in a chromatographic column. The diffusion and drift of the molecules in the mobile phase is described with a simple one-dimensional random walk. The adsorption-desorption process is modeled by a Poisson process that assumes exponential sojourn times of the molecules in both the mobile and the stationary phases. The microscopic, or molecular model of chromatography studied here turns out to be identical to the macroscopic lumped kinetic model of chromatography, whose solution is well known in chromatography. A complete equivalence of the two models is established via the identical expressions they provide for the band profiles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号