首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The NMR chemical shifts of two azoles and one benzazole whose crystal structures present polymorphism have been computed using the GIPAW approach. 15N and 13C nuclei have been studied. Statistical analysis of the computed 13C and 15N chemical shifts indicates that the GIPAW chemical shifts reproduce with a high degree of accuracy those experimentally reported. This methodology can be used to identify other polymorphic crystal structures.  相似文献   

2.
Three-dimensional electron diffraction crystallography (microED) can solve structures of sub-micrometer crystals, which are too small for single crystal X-ray crystallography. However, R factors for the microED-based structures are generally high because of dynamic scattering. That means R factor may not be reliable provided that kinetic analysis is used. Consequently, there remains ambiguity to locate hydrogens and to assign nuclei with close atomic numbers, like carbon, nitrogen, and oxygen. Herein, we employed microED and ssNMR dipolar-based experiments together with spin dynamics numerical simulations. The NMR dipolar-based experiments were 1H-14N phase-modulated rotational-echo saturation-pulse double-resonance (PM-S-RESPDOR) and 1H-1H selective recoupling of proton (SERP) experiments. The former examined the dephasing effect of a specific 1H resonance under multiple 1H-14N dipolar couplings. The latter examined the selective polarization transfer between a 1H-1H pair. The structure was solved by microED and then validated by evaluating the agreement between experimental and calculated dipolar-based NMR results. As the measurements were performed on 1H and 14N, the method can be employed for natural abundance samples. Furthermore, the whole validation procedure was conducted at 293 K unlike widely used chemical shift calculation at 0 K using the GIPAW method. This combined method was demonstrated on monoclinic l-histidine.  相似文献   

3.
1-Phenyl-cyclopenteno[1,2-d]-1,2,3-rriazolo-5-spiro-4′-[perhydropyrazolino-3′,5′-dione] (5) afforded in situ, by oxidation with lead tetraacetate, the corresponding cyclopentenotriazolo-spiropyrazolodione 6 , which was trapped with dienes giving the hetero-Diels-Alder adducts 10–12 in good yields. The Diels-Alder reactions were examined on the basis of AM1 MO calculations. Total assignment of the 1H- and 13C-nmr chemical shifts as well as the relative configuration of these adducts was accomplished with the help of 2D (1H-1H COSY, 1H -1 H NOESY, 1H-13C XHCORR, 1H-13C COLOC) and NOE difference spectroscopy. The structures of compounds 11a and 11b were also examined by molecular modeling.  相似文献   

4.
Proton and carbon-13 chemical shifts of para-substituted stilbenes have been measured. 1H-1H, 1H-13C COSY spectra were obtained to analyze unambiguously the chemical shifts of protons and carbons. A long range coupling between 2-H and α-H was observed in a 1H-1H COSY spectrum. The observed chemical shifts have been correlated with Hammett substituent parameters. Among ethenyl protons and carbons, all but the chemical shifts of α-H show good correlation with both dual substituent parameters and single substituent parameters. In addition to this finding, the excellent linear correlations of C-l, and 4′-H of 4-substituted trans-stilbenes are also reported. Besides the correlations of chemical shifts with Hammett parameters, a good correlation between the chemical shifts and the calculated charges of position C-4′ are reported.  相似文献   

5.
Experimental 13C solid-state magic-angle spinning (MAS) Nuclear Magnetic Resonance (NMR) as well as Density-Functional Theory (DFT) gauge-including projector augmented wave (GIPAW) calculations were used to probe disorder and local mobility in diethylcarbamazine citrate, (DEC)+(citrate). This compound has been used as the first option drug for the treatment of filariasis, a disease endemic in tropical countries and caused by adult worms of Wuchereria bancrofti, which is transmitted by mosquitoes. We firstly present 2D 13C─1H dipolar-coupling-mediated heteronuclear correlation spectra recorded at moderate spinning frequency, to explore the intermolecular interaction between DEC and citrate molecules. Secondly, we investigate the dynamic behavior of (DEC)+(citrate) by varying the temperature and correlating the experimental MAS NMR results with DFT GIPAW calculations that consider two (DEC)+ conformers (in a 70:30 ratio) for crystal structures determined at 293 and 235 K. Solid-state NMR provides insights on slow exchange dynamics revealing conformational changes involving particularly the DEC ethyl groups.  相似文献   

6.
报道了盐酸莫西沙星的元素分析、红外光谱(IR) 、紫外光谱(UV) 、质谱(MS) 、氢-氢相关谱(1H-1HCOSY) 、碳谱(DEPT-45、DEPT-90、DEPT-135) 、多键碳氢相关谱(HMBC)等波谱数据,并对特征数据进行了化合物的结构解析。对所有的1H-NMR、13C-NMR谱的信号进行了归属。  相似文献   

7.
Simulation of 2D 1H homo- and 1H-13C heteronuclear NMR spectra of organic molecules are here suggested as a tool in the structure elucidation of organic compounds. DFT calculations of 1H and 13C chemical shifts are performed on a sample compound, the ethyl ester of the exo-2-norbornanecarbamic acid, with the mPW1PW91 method using the 6-31G(d) basis set, following a full optimization of the geometry. Homo and heteronuclear spin-spin coupling constants are also calculated, providing full prediction of the common 2D 1H-1H COSY, 2D 1H-13C HSQC, and 2D 1H-13C HMBC.  相似文献   

8.
NMR studies of the structure and dynamics of a system composed of the acidic polymer poly(acrylic acid) (PAA) and the basic polymer poly(4‐vinyl pyridine) (P4VP) are presented. This system aims at the application of anhydrous proton‐conducting membranes that can be used at elevated temperatures at which the proton conduction of hydrated membranes breaks down. The 1H NMR measurements have been preformed under fast magic angle spinning (MAS) conditions to achieve sufficient resolution and the applied 1H NMR methods vary from simple 1H MAS to double‐quantum filtered methods and two‐dimensional 1H double‐quantum spectroscopy. The dynamic behavior of the systems has been investigated via variable temperature 1H MAS NMR. 13C cross‐polarization MAS NMR provides additional aspects of dynamic and structural features to complete the picture. Different types of acidic protons have been identified in the studied PAA‐P4VP systems that are nonhydrogen‐bonded free acidic protons, hydrogen‐bonded dicarboxylic dimers, and protons forming hydrogen bonds between carboxylic protons and ring nitrogens. The conversion of dimer structures in dried PAA to free carboxylic acid groups is accomplished at temperatures above 380 K. However, the stability of hydrogen‐bonding strongly depends on the hydration level of the polymer systems. The effect of hydration becomes less apparent in the complexes. An inverse proportionality between hydrogen‐bonding strength and proton conduction in the PAA‐P4VP acid–base polymer blend systems was established. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 138–155, 2009  相似文献   

9.
脯氨酸类衍生物结构独特,鲜有报道利用核磁共振(nuclear magnetic resonance,NMR)技术对氨基酸的手性进行鉴别.利用多种NMR技术:1H NMR、1H-1H同核位移相关谱(1H-1H COSY)、1H-1H质子全相关谱(1H-1H TOCSY)、1H-1H核Overhauser效应谱(1H-1H NOESY)、13C NMR、无畸变的极化转移增强法(DEPT135°)、1H-13C检出1H的异核单量子相干(1H-13C HSQC)和1H-13C检出1H的异核多键相关(1H-13C HMBC),对脯氨酸类N-酰胺衍生物两种构象异构体的1H和13C NMR进行了全归属,确定了室温下在二甲基亚砜(DMSO)中L型和D型的顺反异构体以相同的比例同时存在.  相似文献   

10.
The structures of two new cycloartane triterpenoids, cycloalpigenin A and cycloalpioside A, isolated from Astragalus alopecurus Pall. (Leguminosae) have been established on the basis of chemical transformations together with1H,13C, and 2D1H-1H and1H-13C chemical shift correlation NMR spectroscopy and IR, mass, and CD spectra. Cycloalpigenin A is 3β,16β,25-trihydroxy-20R,24S-epoxycycloartan-12-one, and cycloalpioside A is cycloalpigenin A 3-O-β-D-xylopyranoside.  相似文献   

11.
The characterization of the three-dimensional structure of solids is of major importance, especially in the pharmaceutical field. In the present work, NMR crystallography methods are applied with the aim to refine the crystal structure of carbimazole, an active pharmaceutical ingredient used for the treatment of hyperthyroidism and Grave’s disease. Starting from previously reported X-ray diffraction data, two refined structures were obtained by geometry optimization methods. Experimental 1H and 13C isotropic chemical shift measured by the suitable 1H and 13C high-resolution solid state NMR techniques were compared with DFT-GIPAW calculated values, allowing the quality of the obtained structure to be experimentally checked. The refined structure was further validated through the analysis of 1H-1H and 1H-13C 2D NMR correlation experiments. The final structure differs from that previously obtained from X-ray diffraction data mostly for the position of hydrogen atoms.  相似文献   

12.
The synthesis of 1-azaphenoxathiin N-oxide is described. Total assignment of the 13C-nmr spectrum and the effects of the N-oxide moiety on the chemical shifts and 1H-13C spin couplings constants are described and compared to the parent 1-azaphenoxathiin system. The potential for the use of N-oxidation induced changes in 13C-nmr chemical shifts and 1H-13C coupling constants as an assignment criterion is also discussed.  相似文献   

13.
1H and 13C NMR spectra of 8-hydroxyquinoline (oxine) and its 5-Me, 5-F, 5-Cl, 5-Br and 5-NO2 derivatives have been studied in DMSO-d6 solution. The 1H and 13C chemical shifts and proton–proton, proton–fluorine, carbon–proton and carbon–fluorine coupling constants have been determined. The 1H and 13C chemical shifts have been correlated with the charge densities on the hydrogen and carbon atoms calculated by the CNDO/2 method. The correlation of the 1H and 13C chemical shifts with the total charge densities on the carbon atoms is approximately linear (rH2 = 0.85, rC2 = 0.84). The proton in peri position to the nitro group in 5-NO2-oxine is an exception.  相似文献   

14.
Five new thiophenoxyketinimines have been synthesized. 1H and 13C NMR spectra as well as deuterium isotope effects on 13C chemical shifts are determined, and spectra are assigned. DFT and MP2 calculations of both structures, chemical shifts, and isotope effects on chemical shifts are done. The combined analysis reveals that the compounds are primarily on a zwitterionic form with an NH+ and a S group and with a little of the neutral form mixed in. Very strong intramolecular hydrogen bonding is found and very high NH chemical shifts are observed. The theoretical calculations show that calculations at the MP2 level are best to obtain correct “C═S” chemical shifts.  相似文献   

15.
The structural change near the phase transition temperatures of [NH2(CH3)2]2CuCl4 is discussed in terms of the chemical shifts and the spin-lattice relaxation times T in the rotating frame for 1H MAS NMR and 13C CP/MAS NMR. The 1H T undergoes molecular motion near the phase-transition temperature (TC2 = 253 K). In addition, the two inequivalent [NH2(CH3)2] (1) and [NH2(CH3)2] (2) sites were distinguishable by the 13C chemical shift. And, the most significant change was observed at TC2 for the 13C CP/MAS NMR spectrum; this temperature corresponds to a ferroelastic phase transition with different orientations.  相似文献   

16.
Four N-acyl-t(3)-isopropyl-r(2),c(6)-bis-2′-furylpiperidin-4-one oximes 14 were synthesized and the high resolution 1H and 13C NMR spectra have been recorded at various temperatures and analyzed. The spectra reveal the presence of two rotameric forms (syn and anti) in solution. 1H-1H COSY and 1H-13C COSY spectra have been recorded to assist the assignment of the signals for the syn and anti isomers of 14. Coupling constants predict an equilibrium mixture of boat form B1 and alternate chair form CA for 14. The effect of varying the substituents at nitrogen and at C(4) on the 1H and 13C chemical shifts has been analyzed in detail. The molecular structures of the N-acyl derivatives 14 were also determined using AM1 Hamiltonian and the results have been compared to the results derived from spectral studies. Mass spectra have also been recorded for 14.  相似文献   

17.
By using 13C MAS NMR spectroscopy (MAS=magic angle spinning), the conversion of selectively 13C‐labeled n‐butane on zeolite H‐ZSM‐5 at 430–470 K has been demonstrated to proceed through two pathways: 1) scrambling of the selective 13C‐label in the n‐butane molecule, and 2) oligomerization–cracking and conjunct polymerization. The latter processes (2) produce isobutane and propane simultaneously with alkyl‐substituted cyclopentenyl cations and condensed aromatic compounds. In situ 13C MAS NMR and complementary ex situ GC–MS data provided evidence for a monomolecular mechanism of the 13C‐label scrambling, whereas both isobutane and propane are formed through intermolecular pathways. According to 13C MAS NMR kinetic measurements, both pathways proceed with nearly the same activation energies (Ea=75 kJ mol?1 for the scrambling and 71 kJ mol?1 for isobutane and propane formation). This can be rationalized by considering the intermolecular hydride transfer between a primarily initiated carbenium ion and n‐butane as being the rate‐determining stage of the n‐butane conversion on zeolite H‐ZSM‐5.  相似文献   

18.
The 1H and 13C NMR spectra of 9-acridinone and its five derivatives dissolved in CDCl3, CD3CN and DMSO-d6 were measured in order to reveal the influence of the constitution of the compounds and features of the solvents on chemical shifts and 1H-1H coupling constants. Experimental data were compared with theoretically predicted chemical shifts, on the GIAO/DFT level of theory, for DFT (B3LYP)/6-31G∗∗ optimized geometries of molecules—also for four other 9-acridinones. This comparison helped to ascribe resonance signals in the spectra to relevant atoms and enabled revelation of relations between chemical shifts and physicochemical features of the compounds. It was found that experimentally or theoretically determined 1H and 13C chemical shifts of selected atoms correlate with theoretically predicted values of dipole moments of the molecules, as well as bond lengths, atomic partial charges and energies of HOMO.  相似文献   

19.
Polymorphism of Bis(dineopentoxyphosphorothioyl)diselenide – Correlation of X‐Ray Structure and MAS NMR Data The crystal structures of two polymorphs of the title compound were determined by single‐crystal X‐ray methods and refined both at room temperature and 250 K. A triclinic and a monoclinic phase were discovered and studied. Both modifications are centrosymmetrical layer structures. The numerically clearly significant differences were observed in unit cell volumes as well as in alternating disproportions of distances of atoms being chemically and crystallographically equivalent as a result of discontinuously distributed conformational changes along the single bonds. Phase transitions were not observed by cooling up to 240 K. Lowering temperatures single crystals of both phases decompose because of the considerable anisotropy of intermolecular interaction. The small differences of molecular structure produce slightly splitted 31P CP MAS NMR signals. A comparison of the chemical shifts from 13C CP MAS NMR spectra and from quantum‐chemical calculations leads to the conclusion that the inner rotation around CH2–Cq bonds is not frozen in the solid state.  相似文献   

20.
The structures of the new cycloartane methylsteroid cycloalpigenin B and its glycoside cycloalpioside B, isolated fromAstragalus alopecurus Pall. (Leguminosae) have been determined on the basis of chemical transformations with the assistance of1H and13C NMR spectroscopy and 2D NMR1H-1H and1H-13C correlations of chemical signals and IR, CD, and electron-impact mass spectrometry. Cycloalpigenin B is 20R,24S-epoxycycloartane-3β,12α,16β,25-tetraol. A transition from cycloalpigenin B to cycloalpigenin A has been achieved. Cycloalpioside B is 20R,24S-epoxycycloartane-3β,12α,16β,25-tetraol 3-O-β-D-xylopyranoside.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号