首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper we analyze, from the numerical point of view, a dynamic thermoelastic problem. Here, the so-called exact heat conduction model with a delay term is used to obtain the heat evolution. Thus, the thermomechanical problem is written as a coupled system of partial differential equations, and its variational formulation leads to a system written in terms of the velocity and the temperature fields. An existence and uniqueness result is recalled. Then, fully discrete approximations are introduced by using the classical finite element method to approximate the spatial variable and the implicit Euler scheme to discretize the time derivatives. A priori error estimates are proved, from which the linear convergence of the algorithm could be derived under suitable additional regularity conditions. Finally, a two-dimensional numerical example is solved to show the accuracy of the approximation and the decay of the discrete energy.  相似文献   

2.
In this work, a contact problem between an elastic body and a deformable obstacle is numerically studied. The bone remodeling of the material is also taken into account in the model and the contact is modeled using the normal compliance contact condition. The variational problem is written as a nonlinear variational equation for the displacement field, coupled with a first-order ordinary differential equation to describe the physiological process of bone remodeling. An existence and uniqueness result of weak solutions is stated. Then, fully discrete approximations are introduced based on the finite element method to approximate the spatial variable and an Euler scheme to discretize the time derivatives. Error estimates are obtained, from which the linear convergence of the algorithm is derived under suitable regularity conditions. Finally, some 2D numerical results are presented to demonstrate the behavior of the solution.  相似文献   

3.
Summary. This paper describes the numerical analysis of a time dependent linearised fluid structure interaction problems involving a very viscous fluid and an elastic shell in small displacements. For simplicity, all changes of geometry are neglected. A single variational formulation is proposed for the whole problem and generic discretisation strategies are introduced independently on the fluid and on the structure. More precisely, the space approximation of the fluid problem is realized by standard mixed finite elements, the shell is approximated by DKT finite elements, and time derivatives are approximated either by midpoint rules or by backward difference formula. Using fundamental energy estimates on the continuous problem written in a proper functional space, on its discrete equivalent, and on an associated error evolution equation, we can prove that the proposed variational problem is well posed, and that its approximation in space and time converges with optimal order to the continuous solution. Received May 14, 1999 / Revised version revised October 14, 1999 / Published online July 12, 2000  相似文献   

4.
We study from a numerical point of view a multidimensional problem involving a viscoelastic body with two porous structures. The mechanical problem leads to a linear system of three coupled hyperbolic partial differential equations. Its corresponding variational formulation gives rise to three coupled parabolic linear equations. An existence and uniqueness result, and an energy decay property, are recalled. Then, fully discrete approximations are introduced using the finite element method and the implicit Euler scheme. A discrete stability property and a priori error estimates are proved, from which the linear convergence of the algorithm is derived under suitable additional regularity conditions. Finally, some numerical simulations are performed in one and two dimensions to show the accuracy of the approximation and the behaviour of the solution.  相似文献   

5.
We present convergence results and error estimates concerning the numerical approximation of a class of bone remodeling models, that are elastic adaptive rod models. These are characterized by an elliptic variational equation, representing the equilibrium of the rod under the action of applied loads, coupled with an ordinary differential equation with respect to time, describing the physiological process of bone remodeling. We first consider the semi-discrete approximation, where only the space variables are discretized using the standard Galerkin method, and then, applying the forward Euler method for the time discretization, we focus on the fully discrete approximation.  相似文献   

6.
We develop two linear, second order energy stable schemes for solving the governing system of partial differential equations of a hydrodynamic phase field model of binary fluid mixtures. We first apply the Fourier pseudo-spectral approximation to the partial differential equations in space to obtain a semi-discrete, time-dependent, ordinary differential and algebraic equation (DAE) system, which preserves the energy dissipation law at the semi-discrete level. Then, we discretize the DAE system by the Crank-Nicolson (CN) and the second-order backward differentiation/extrapolation (BDF/EP) method in time, respectively, to obtain two fully discrete systems. We show that the CN method preserves the energy dissipation law while the BDF/EP method does not preserve it exactly but respects the energy dissipation property of the hydrodynamic model. The two new fully discrete schemes are linear, unconditional stable, second order accurate in time and high order in space, and uniquely solvable as linear systems. Numerical examples are presented to show the convergence property as well as the efficiency and accuracy of the new schemes in simulating mixing dynamics of binary polymeric solutions.  相似文献   

7.
Variational integrators are modern time-integration schemes based on a discretization of the underlying variational principle. In this paper, Hamilton's principle is approximated by an action sum, whose vanishing variation results in discrete Euler-Lagrange equations or, equivalently, in discrete evolution equations for the position and momentum. In order to include the viscous and thermal virtual work (mechanical and thermal virtual dissipation), Hamilton's principle is extended by D'Alembert terms, which account for the time evolution equation of the internal variable and Fourier's law. From this variational formulation, variational integrators using different orders of approximation of the state variables as well as of the quadrature of the action integral are constructed and compared. A thermo-viscoelastic double pendulum comprised of two discrete masses connected by generalized Maxwell elements, and subject to heat conduction between them serves as a discrete model problem. (© 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
We apply an expanded mixed finite element method, which introduces the gradient as a third explicit unknown, to solve a linear second-order elliptic equation in divergence form. Instead of using the standard dual form, we show that the corresponding variational formulation can be written as a dual–dual operator equation. We establish existence and uniqueness of solution for the continuous and discrete formulations, and provide the corresponding error analysis by using Raviart–Thomas elements. In addition, we show that the corresponding dual–dual linear system can be efficiently solved by a preconditioned minimum residual method. Some numerical results, illustrating this fact and the rate of convergence of the mixed finite element method, are also provided.  相似文献   

9.
We consider a conservative and entropie discrete-velocity model for the Bathnagar-Gross-Krook (BGK) equation. In this model, the approximation of the Maxwellian is based on a discrete entropy minimization principle. First, we prove a consistency result for this approximation. Then, we demonstrate that the discrete-velocity model possesses a unique solution. Finally, the model is written in a continuous equation form, and we prove the convergence of its solution toward a solution of the BGK equation.  相似文献   

10.
In this article we consider a general linear vibration problem in variational form. Models for the vibration of systems of elastic bodies can be written in this form. We show how properties of the damping term determines the time differentiability of the solution and establish classes of permissible initial conditions. The proofs are based on a direct link between the variational form and an abstract differential equation.  相似文献   

11.
In this paper, we study, from the numerical point of view, a porous thermoviscoelastic mixture problem. The mechanical problem is written as a linear coupled system of two hyperbolic partial differential equations for the porosities and a parabolic partial differential equation for the temperature field. An existence and uniqueness result and an energy decay property are stated. Then, fully discrete approximations are introduced by using the finite element method to approximate the spatial variable and the backward Euler scheme to discretize the time derivatives. A priori error estimates are proved from which, under suitable regularity conditions, the linear convergence of the algorithm is derived. Finally, some numerical simulations are presented to demonstrate the accuracy of the approximations in an academical one-dimensional example and the behaviour of the solutions in one- and two-dimensional problems.  相似文献   

12.
In this paper we consider a model for the motion of incompressible viscous flows proposed by Ladyzhenskaya. The Ladyzhenskaya model is written in terms of the velocity and pressure while the studied model is written in terms of the streamfunction only. We derived the streamfunction equation of the Ladyzhenskaya model and present a weak formulation and show that this formulation is equivalent to the velocity–pressure formulation. We also present some existence and uniqueness results for the model. Finite element approximation procedures are presented. The discrete problem is proposed to be well posed and stable. Some error estimates are derived. We consider the 2D driven cavity flow problem and provide graphs which illustrate differences between the approximation procedure presented here and the approximation for the streamfunction form of the Navier–Stokes equations. Streamfunction contours are also displayed showing the main features of the flow.  相似文献   

13.
The reconstruction of an unknown solely time‐dependent Dirichlet boundary condition in a nonlinear parabolic problem containing a linear and a nonlinear Volterra operator is considered. The inverse problem is converted into a variational problem in which the unknown Dirichlet condition is eliminated using a given integral overdetermination. A time‐discrete recurrent approximation scheme is designed, using Backward Euler's method. The convergence of the approximations towards a solution of the variational problem is proved under appropriate assumptions on the data and on the Volterra operators. The uniqueness of this solution is shown in the case that the nonlinear Volterra operator satisfies a particular inequality. Moreover, the Finite Element Method is used to discretize the time‐discrete approximation scheme in space. Finally, full‐discrete error estimates are derived for a particular choice of the finite elements. The corresponding convergence rates are supported by a numerical experiment. © 2015 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 31: 1444–1460, 2015  相似文献   

14.
A semi-analytical direct optimal control solution for strongly excited and dissipative Hamiltonian systems is proposed based on the extended Hamiltonian principle, the Hamilton-Jacobi-Bellman (HJB) equation and its variational integral equation, and the finite time element approximation. The differential extended Hamiltonian equations for structural vibration systems are replaced by the variational integral equation, which can preserve intrinsic system structure. The optimal control law dependent on the value function is determined by the HJB equation so as to satisfy the overall optimality principle. The partial differential equation for the value function is converted into the integral equation with variational weighting. Then the successive solution of optimal control with system state is designed. The two variational integral equations are applied to sequential time elements and transformed into the algebraic equations by using the finite time element approximation. The direct optimal control on each time element is obtained respectively by solving the algebraic equations, which is unconstrained by the system state observed. The proposed control algorithm is applicable to linear and nonlinear systems with the quadratic performance index, and takes into account the effects of external excitations measured on control. Numerical examples are given to illustrate the optimal control effectiveness.  相似文献   

15.
The goal of the present paper is to investigate an abstract system, called fractional differential variational inequality, which consists of a mixed variational inequality combined with a fractional evolution equation in the framework of Banach spaces. Using discrete approximation approach, an existence theorem of solutions for the inequality is established under some suitable assumptions.  相似文献   

16.
Summary Almost optimalL -convergence of an approximation of a variational inequality of parabolic type is proved under regularity assumptions which are met by the solution of a one phase Stefan problem. The discretization employs piecewise linear finite elements in space and the backward Euler scheme in time. By means of a maximum principle the problem is reduced to an error estimate for an auxiliary parabolic equation. The latter bound is obtained by using the smoothing property of the Galerkin method.  相似文献   

17.
In this paper, we are concerned with the numerical approximation of the solutions to a stationary Navier-Stokes-like system of equations introduced in [1]. Unlike previous studies, the discrete trilinear form appearing in the variational formulation does not verify the usual cancellation property bh (uh, vh, vh) = 0. Existence of solutions for the approximate equation and general convergence theorems are demonstrated.  相似文献   

18.
This article deals with a numerical approximation method using an evolutionary partial differential equation (PDE) by discrete variational splines in a finite element space. To formulate the problem, we need an evolutionary PDE equation with respect to the time and the position, certain boundary conditions and a set of approximating points. We show the existence and uniqueness of the solution and we study a computational method to compute such a solution. Moreover, we established a convergence result with respect to the time and the position. We provided several numerical and graphic examples of approximation in order to show the validity and effectiveness of the presented method.© 2017 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 34: 5–18, 2018  相似文献   

19.
This paper recognizes that in many decision environments in which revenue optimization is attempted, an actual demand curve and its parameters are generally unobservable. Herein, we describe the dynamics of demand as a continuous time differential equation based on an evolutionary game theory perspective. We then observe realized sales data to obtain estimates of parameters that govern the evolution of demand; these are refined on a discrete time scale. The resulting model takes the form of a differential variational inequality. We present an algorithm based on a gap function for the differential variational inequality and report its numerical performance for an example revenue optimization problem.  相似文献   

20.
Based on high-order linear multistep methods (LMMs), we use the class of extended trapezoidal rules (ETRs) to solve boundary value problems of ordinary differential equations (ODEs), whose numerical solutions can be approximated by boundary value methods (BVMs). Then we combine this technique with fourth-order Padé compact approximation to discrete 2D Schrödinger equation. We propose a scheme with sixth-order accuracy in time and fourth-order accuracy in space. It is unconditionally stable due to the favourable property of BVMs and ETRs. Furthermore, with Richardson extrapolation, we can increase the scheme to order 6 accuracy both in time and space. Numerical results are presented to illustrate the accuracy of our scheme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号