首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, we describe a numerical approach based on finite difference method to solve a mathematical model arising from a model of neuronal variability. The mathematical modelling of the determination of the expected time for generation of action potentials in nerve cells by random synaptic inputs in dendrites includes a general boundary-value problem for singularly perturbed differential-difference equation with small shifts. In the numerical treatment for such type of boundary-value problems, first we use Taylor approximation to tackle the terms containing small shifts which converts it to a boundary-value problem for singularly perturbed differential equation. A rigorous analysis is carried out to obtain priori estimates on the solution of the problem and its derivatives up to third order. Then a parameter uniform difference scheme is constructed to solve the boundary-value problem so obtained. A parameter uniform error estimate for the numerical scheme so constructed is established. Though the convergence of the difference scheme is almost linear but its beauty is that it converges independently of the singular perturbation parameter, i.e., the numerical scheme converges for each value of the singular perturbation parameter (however small it may be but remains positive). Several test examples are solved to demonstrate the efficiency of the numerical scheme presented in the paper and to show the effect of the small shift on the solution behavior.  相似文献   

2.
We present a high order parameter-robust finite difference method for singularly perturbed reaction-diffusion problems. The problem is discretized using a suitable combination of fourth order compact difference scheme and central difference scheme on generalized Shishkin mesh. The convergence analysis is given and the method is proved to be almost fourth order uniformly convergent in maximum norm with respect to singular perturbation parameter ε. Numerical experiments are conducted to demonstrate the theoretical results.  相似文献   

3.
In this paper a singularly perturbed Riccati equation is considered. The problem is solved by using a hybrid finite difference method on a Shishkin mesh. The method is composed of the midpoint upwind scheme and the backward Euler scheme based on the relation between the local mesh width and the perturbation parameter. It is proved that the scheme is almost second-order convergent, in the global maximum norm, independently of the singular perturbation parameter. Numerical experiments support the theoretical results.  相似文献   

4.
The present study is concerned with the numerical solution, using finite difference method of a one-dimensional initial-boundary value problem for a linear Sobolev or pseudo-parabolic equation with initial jump. In order to obtain an efficient method, to provide good approximations with independence of the perturbation parameter, we have developed a numerical method which combines a finite difference spatial discretization on uniform mesh and the implicit rule on Shishkin mesh(S-mesh) for the time variable. The fully discrete scheme is shown to be convergent of order two in space and of order one expect for a logarithmic factor in time, uniformly in the singular perturbation parameter. Some numerical results confirming the expected behavior of the method are shown.   相似文献   

5.
We consider a uniform finite difference method on Shishkin mesh for a quasilinear first-order singularly perturbed boundary value problem (BVP) depending on a parameter. We prove that the method is first-order convergent except for a logarithmic factor, in the discrete maximum norm, independently of the perturbation parameter. Numerical experiments support these theoretical results.  相似文献   

6.
In this work, a singularly perturbed two-point boundary value problem of convection-diffusion type is considered. An hp version finite element method on a strongly graded piecewise uniform mesh of Shishkin type is used to solve the model problem. With the analytic assumption of the input data, it is shown that the method converges exponentially and the convergence is uniformly valid with respect to the singular perturbation parameter.  相似文献   

7.
The motion of a naturally straight inextensible flexible elastic hanging rod is formulated and then linearized about the straight solution. To solve this equation by separation of variables, an eigenvalue problem is derived. When the stiffness of the rod is small, the eigenvalue equation is a singular perturbation problem. This paper is devoted to solving this eigenvalue problem by boundary layer analysis when the stiffness is suitably small, especially on the analytic approximate solutions of the first several eigenvalues and eigenfunctions. The first three eigenvalues are also compared with the numerical results computed by a finite difference method. The excellent agreement shows the efficiency of the boundary layer analysis.  相似文献   

8.
We examine a singularly perturbed linear parabolic initial-boundary value problem in one space variable. Various finite difference schemes are derived for this problem using a semidiscrete Petrov—Galerkin finite element method. These schemes do not have a cell Reynolds number restriction and are shown to be first-order accurate, uniformly in the perturbation parameter. Numerical results are also presented.  相似文献   

9.
A coupled first order system of one singularly perturbed and one non-perturbed ordinary differential equation with prescribed initial conditions is considered. A Shishkin piecewise uniform mesh is constructed and used, in conjunction with a classical finite difference operator, to form a new numerical method for solving this problem. It is proved that the numerical approximations generated by this method are essentially first order convergent in the maximum norm at all points of the domain, uniformly with respect to the singular perturbation parameter. Numerical results are presented in support of the theory.  相似文献   

10.
This paper is concerned with a numerical scheme to solve a singularly perturbed convection-diffusion problem. The solution of this problem exhibits the boundary layer on the right-hand side of the domain due to the presence of singular perturbation parameter ε. The scheme involves B-spline collocation method and appropriate piecewise-uniform Shishkin mesh. Bounds are established for the derivative of the analytical solution. Moreover, the present method is boundary layer resolving as well as second-order uniformly convergent in the maximum norm. A comprehensive analysis has been given to prove the uniform convergence with respect to singular perturbation parameter. Several numerical examples are also given to demonstrate the efficiency of B-spline collocation method and to validate the theoretical aspects.  相似文献   

11.
This paper deals with a numerical method for solving one-dimensional unsteady Burgers–Huxley equation with the viscosity coefficient ε. The parameter ε takes any values from the half open interval (0, 1]. At small values of the parameter ε, an outflow boundary layer is produced in the neighborhood of right part of the lateral surface of the domain and the problem can be considered as a non-linear singularly perturbed problem with a singular perturbation parameter ε. Using singular perturbation analysis, asymptotic bounds for the derivatives of the solution are established by decomposing the solution into smooth and singular components. We construct a numerical scheme that comprises of implicit-Euler method to discretize in temporal direction on uniform mesh and a monotone hybrid finite difference operator to discretize the spatial variable with piecewise uniform Shishkin mesh. To obtain better accuracy, we use central finite difference scheme in the boundary layer region. Shishkin meshes are refined in the boundary layer region, therefore stability constraint is satisfied by proposed scheme. Quasilinearization process is used to tackle the non-linearity and it is shown that quasilinearization process converges quadratically. The method has been shown to be first order uniformly accurate in the temporal variable, and in the spatial direction it is first order parameter uniform convergent in the outside region of boundary layer, and almost second order parameter uniform convergent in the boundary layer region. Accuracy and uniform convergence of the proposed method is demonstrated by numerical examples and comparison of numerical results made with the other existing methods.  相似文献   

12.
In the present paper, approximate analytical and numerical solutions to nonlinear eigenvalue problems arising in nonlinear fracture mechanics in studying stress-strain fields near a crack tip under mixed-mode loading are presented. Asymptotic solutions are obtained by the perturbation method (the artificial small parameter method). The artificial small parameter is the difference between the eigenvalue corresponding to the nonlinear eigenvalue problem and the eigenvalue related to the linear “undisturbed” problem. It is shown that the perturbation technique is an effective method of solving nonlinear eigenvalue problems in nonlinear fracture mechanics. A comparison of numerical and asymptotic results for different values of the mixity parameter and hardening exponent shows good agreement. Thus, the perturbation theory technique for studying nonlinear eigenvalue problems is offered and applied to eigenvalue problems arising in fracture mechanics analysis in the case of mixed-mode loading.  相似文献   

13.
In this work we define a compact finite difference scheme of positive type to solve a class of 2D reaction–diffusion elliptic singularly perturbed problems. We prove that if the new scheme is constructed on a piecewise uniform mesh of Shishkin type, it provides better approximations than the classical central finite difference scheme. Moreover, the uniform parameter bound of the error shows that the scheme is third order convergent in the maximum norm when the singular perturbation parameter is sufficiently small. Some numerical experiments illustrate in practice the result of convergence proved theoretically.  相似文献   

14.
In this article, we consider a class of singularly perturbed mixed parabolic‐elliptic problems whose solutions possess both boundary and interior layers. To solve these problems, a hybrid numerical scheme is proposed and it is constituted on a special rectangular mesh which consists of a layer resolving piecewise‐uniform Shishkin mesh in the spatial direction and a uniform mesh in the temporal direction. The domain under consideration is partitioned into two subdomains. For the spatial discretization, the proposed scheme is comprised of the classical central difference scheme in the first subdomain and a hybrid finite difference scheme in the second subdomain, whereas the time derivative in the given problem is discretized by the backward‐Euler method. We prove that the method converges uniformly with respect to the perturbation parameter with almost second‐order spatial accuracy in the discrete supremum norm. Numerical results are finally presented to validate the theoretical results.© 2014 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 30: 1931–1960, 2014  相似文献   

15.
This paper deals with the construction of a nonstandard numerical method to compute the travelling wave solutions of nonlinear reaction diffusion equations at high wave speeds. Related general properties are studied using the perturbation approximation. At high wave speed the perturbation parameter approaches to zero and the problem exhibits a multiscale character. That is, there are thin layers where the solution varies rapidly, while away from these layers the solution behaves regularly and varies slowly. Most of the conventional methods fail to capture this layer behavior. Thus, the quest for some new numerical techniques that may handle the travelling wave solutions at high wave speeds earns relevance. In this paper, one such parameter robust nonstandard numerical scheme is constructed, in the sense that its numerical solution converges in the maximum norm to the exact solution uniformly well for all finite wave speeds. To overcome the difficulty due to the nonlinearity, the problem is linearized using the quasilinearization process followed by nonstandard finite difference discretization. An extensive amount of analysis is carried out which uses a suitable decomposition of the error into smooth and singular component and a comparison principle combined with appropriate barrier functions. The error estimates are obtained, which ensures uniform convergence of the method. A set of numerical experiment is carried out in support of the predicted theory that validates computationally the theoretical results. © 2007 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2007  相似文献   

16.
A finite element method is proposed for the sing ularly perturbed reaction-diffusion problem.An optimal error bound is derived,independent of the perturbation parameter.  相似文献   

17.
In this paper we address the problem of estimating the mean derivative when the entity containing the parameter has jumps. The methods considered are finite differences, infinitesimal perturbation analysis and the likelihood ratio score function. We calculate the difference between the differentiated mean and the mean derivative. In case of finite differences, we compute the stepsize in the simulation that asymptotically minimizes the mean square error. We also show that the two latter methods, infinitesimal perturbation analysis and likelihood ratio score function, are mathematically equivalent.  相似文献   

18.
We consider a singularly perturbed one-dimensional reaction–diffusion problem with strong layers. The problem is discretized using a compact fourth order finite difference scheme. Altough the discretization is not inverse monotone we are able to establish its maximum-norm stability and to prove its pointwise convergence on a Shishkin mesh. The convergence is uniform with respect to the perturbation parameter. Numerical experiments complement our theoretical results.  相似文献   

19.
We consider a Dirichlet boundary value problem for a class of singularly perturbed semilinear reaction-diffusion equations. A  B-spline collocation method on a piecewise-uniform Shishkin mesh is developed to solve such problems numerically. The convergence analysis is given and the method is shown to be almost second-order convergent, uniformly with respect to the perturbation parameter ε in the maximum norm. Numerical results are presented to validate the theoretical results.  相似文献   

20.
We consider the numerical approximation of a singularly perturbed time delayed convection diffusion problem on a rectangular domain. Assuming that the coefficients of the differential equation be smooth, we construct and analyze a higher order accurate finite difference method that converges uniformly with respect to the singular perturbation parameter. The method presented is a combination of the central difference spatial discretization on a Shishkin mesh and a weighted difference time discretization on a uniform mesh. A?priori explicit bounds on the solution of the problem are established. These bounds on the solution and its derivatives are obtained using a suitable decomposition of the solution into regular and layer components. It is shown that the proposed method is $L_{2}^{h}$ -stable. The analysis done permits its extension to the case of adaptive meshes which may be used to improve the solution. Numerical examples are presented to demonstrate the effectiveness of the method. The convergence obtained in practical satisfies the theoretical predictions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号