首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
This paper is concerned with the existence and nonexistence of positive solutions of the second-order nonlinear dynamic equation uΔΔ(t)+λa(t)f(u(σ(t)))=0, t∈[0,1], satisfying either the conjugate boundary conditions u(0)=u(σ(1))=0 or the right focal boundary conditions u(0)=uΔ(σ(1))=0, where a and f are positive. We show that there exists a λ>0 such that the above boundary value problem has at least two, one and no positive solutions for 0<λ<λ, λ=λ and λ>λ, respectively. Furthermore, by using the semiorder method on cones of the Banach space, we establish an existence and uniqueness criterion for positive solution of the problem. In particular, such a positive solution uλ(t) of the problem depends continuously on the parameter λ, i.e., uλ(t) is nondecreasing in λ, limλ0+uλ‖=0 and limλ→+∞‖uλ‖=+∞.  相似文献   

2.
3.
4.
Weyl almost automorphy is a natural generalization of Bochner almost automorphy and Stepanov almost automorphy. However, the space composed of Weyl almost automorphic functions is not a Banach space. Therefore, the results of the existence of Weyl almost automorphic solutions of differential equations are few, and the results of the existence of Weyl almost automorphic solutions of difference equations are rare. Since the study of dynamic equations on time scales can unify the study of differential equations and difference equations. Therefore, in this paper, we first propose a concept of Weyl almost automorphic functions on time scales and then take the Clifford-valued shunt inhibitory cellular neural networks with time-varying delays on time scales as an example of dynamic equations on time scales to study the existence and global exponential stability of their Weyl almost automorphic solutions. We also give a numerical example to illustrate the feasibility of our results.  相似文献   

5.
By means of Riccati transformation technique, we establish some new oscillation criteria for the second-order Emden-Fowler delay dynamic equations
xΔΔ(t)+p(t)xγ(τ(t))=0  相似文献   

6.
The principal goal of this paper is to amend oscillation results obtained in the recent paper by Saker and O’Regan (2011) [9].  相似文献   

7.
By employing the generalized Riccati transformation technique, we will establish some new oscillation criteria and study the asymptotic behavior of the nonoscillatory solutions of the second-order nonlinear neutral delay dynamic equation
, on a time scale . The results improve some oscillation results for neutral delay dynamic equations and in the special case when = ℝ our results cover and improve the oscillation results for second-order neutral delay differential equations established by Li and Liu [Canad. J. Math., 48 (1996), 871–886]. When = ℕ, our results cover and improve the oscillation results for second order neutral delay difference equations established by Li and Yeh [Comp. Math. Appl., 36 (1998), 123–132]. When =hℕ, = {t: t = q k , k ∈ ℕ, q > 1}, = ℕ2 = {t 2: t ∈ ℕ}, = = {t n = Σ k=1 n , n ∈ ℕ0}, ={t 2: t ∈ ℕ}, = {√n: n ∈ ℕ0} and ={: n ∈ ℕ0} our results are essentially new. Some examples illustrating our main results are given.   相似文献   

8.
This paper is concerned with the oscillation of second-order nonlinear neutral dynamic equations of the form
(r(t)((y(t)+p(t)y(τ(t)))Δ)γ)Δ+f(t,y(δ(t)))=0,  相似文献   

9.
This paper offers conditions ensuring the existence of solutions of linear boundary value problems for systems of dynamic equations on time scales. Utilizing a method of Moore–Penrose pseudo‐inverse matrices leads to an analytical form of a criterion for the existence of solutions in a relevant space and, moreover, to the construction of a family of linearly independent solutions of such problems in a general case with the number of boundary conditions (defined by a linear vector functional) not coinciding with the number of unknowns of a system of dynamic equations. As an example of an application of the presented results, the problem of bifurcation of solutions of boundary value problems for systems of dynamic equations on time scales with a small parameter is considered.  相似文献   

10.
本文讨论一类具阻尼项的二阶半线性时滞动力方程解的振动性质, 利用广义Riccati 变换和不等式技巧, 在一定条件下, 建立了4 个新的振动准则, 其结果改进和推广了已知的一些结果.  相似文献   

11.
12.
We give a precise formulation and a proof as constructive as possible of the widely accepted claim that solutions of a dynamic equation depend continuously on the base time scale. Our approach to this problem is via Euler polygons which opens possibilities for development of numerical analysis of dynamic equations on time scales.  相似文献   

13.
This paper is concerned with oscillation of the second-order half-linear dynamic equation
(r(t)(xΔγ)Δ)+p(t)xγ(t)=0,  相似文献   

14.
15.
In this paper, we give a new sufficient condition for oscillation of first‐order delay dynamic equations on time scales, which generalize the main results of the papers [Proc. Amer. Math. Soc. 124 (1996), no. 12, 3729–3737] by Li and [Comput. Math. Appl. 37 (1999), no. 7, 11–20] by Tang and Yu. To emphasize the significance of the new result, an example for which all the results fail is also given on a nonstandard time scale. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
In this paper, we establish necessary and sufficient conditions for oscillation of second‐order strongly superlinear and strongly sublinear dynamic equations. Our results unify and improve many known results in the literature.  相似文献   

17.
Over the last years, considerable attention has been paid to the role of the quaternion differential equations (QDEs) which extend the ordinary differential equations. The theory of QDEs was recently well established and has wide applications in physics and life science. This paper establishes a systematic frame work for the theory of linear quaternion dynamic equations on time scales (QDETS), which can be applied to wave phenomena modeling, fluid dynamics and filter design. The algebraic structure of the solutions to the QDETS is actually a left- or right- module, not a linear vector space. On the non-commutativity of the quaternion algebra, many concepts and properties of the classical dynamic equations on time scales (DETS) can not be applied. They should be redefined accordingly. Using $q$-determinant, a novel definition of Wronskian is introduced under the framework of quaternions which is different from the standard one in DETS. Liouville formula for QDETS is also analyzed. Upon these, the solutions to the linear QDETS are established. The Putzer''s algorithms to evaluate the fundamental solution matrix for homogeneous QDETS are presented. Furthermore, the variation of constants formula to solve the nonhomogeneous QDETs is given. Some concrete examples are provided to illustrate the feasibility of the proposed algorithms.  相似文献   

18.
A new theory known as set dynamic equations on time scales has been built. The criteria for the equistability, equiasymptotic stability, uniform and uniformly asymptotic stability were developed in Hong (2010) [1]. In this paper, we consider the exponential stability, exponentially asymptotic stability, uniform and uniformly exponentially asymptotic stability for the trivial solution of set dynamic equations on time scales by using Lyapunov-like functions.  相似文献   

19.
In this paper, we prove the results on existence and uniqueness of the maximal solutions for measure differential equations, considering more general conditions on functions f and g by using the correspondence between the solutions of these equations and the solutions of generalized ODEs. Moreover, we prove these results for the dynamic equations on time scales, using the correspondence between the solutions of these last equations and the solutions of the measure differential equations.  相似文献   

20.
In this paper, we study the n th‐order nonlinear dynamic equation with Laplacians and a deviating argument on an above‐unbounded time scale, where n ?2, New oscillation criteria are established for the cases when n is even and odd and when α  > γ ,α  = γ , and α  < γ , respectively, with α  = α 1?α n  ? 1. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号