首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An efficient spectral method is developed in this paper for the two‐dimensional Stokes eigenvalues on arbitrary triangle. By using the spectral theory of compact operator and approximate property of orthogonal polynomial, we give the error estimate of the approximate eigenvalues and eigenfunctions. In addition, we also present some numerical results to show the validity of our algorithm and the correctness of the theoretical results.  相似文献   

2.
We consider the Stokes eigenvalue problem. For the eigenvalues we derive both upper and lower a‐posteriori error bounds. The estimates are verified by numerical computations. © 2008 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2009  相似文献   

3.
In this paper we analyze the stream function-vorticity-pressure method for the Stokes eigenvalue problem. Further, we obtain full order convergence rate of the eigenvalue approximations for the Stokes eigenvalue problem based on asymptotic error expansions for two nonconforming finite elements, Q 1rot and EQ 1rot. Using the technique of eigenvalue error expansion, the technique of integral identities and the extrapolation method, we can improve the accuracy of the eigenvalue approximations. This project is supported in part by the National Natural Science Foundation of China (10471103) and is subsidized by the National Basic Research Program of China under the grant 2005CB321701.  相似文献   

4.
In this paper, we present a posteriori error estimator for the nonconforming finite element approximation, including using Crouzeix–Raviart element and extended Crouzeix–Raviart element, of the Stokes eigenvalue problem. With the technique of Helmholtz decomposition, we first give out a posteriori error estimator and prove it as the global upper bound and local lower bound of the approximation error. Then, by deleting a jump term in the indicator, another simpler but equivalent indicator is obtained. Some numerical experiments are provided to verify our analysis.  相似文献   

5.
In this paper, we establish a new local and parallel finite element discrete scheme based on the shifted‐inverse power method for solving the biharmonic eigenvalue problem of plate vibration. We prove the local error estimation of finite element solution for the biharmonic equation/eigenvalue problem and prove the error estimation of approximate solution obtained by the local and parallel scheme. When the diameters of three grids satisfy H4 = ?(w2) = ?(h), the approximate solutions obtained by our schemes can achieve the asymptotically optimal accuracy. The numerical experiments show that the computational schemes proposed in this paper are effective to solve the biharmonic eigenvalue problem of plate vibration.  相似文献   

6.
We develop a new approach to a posteriori error estimation for Galerkin finite element approximations of symmetric and nonsymmetric elliptic eigenvalue problems. The idea is to embed the eigenvalue approximation into the general framework of Galerkin methods for nonlinear variational equations. In this context residual-based a posteriori error representations are available with explicitly given remainder terms. The careful evaluation of these error representations for the concrete situation of an eigenvalue problem results in a posteriori error estimates for the approximations of eigenvalues as well as eigenfunctions. These suggest local error indicators that are used in the mesh refinement process.  相似文献   

7.
本文给出Steklov特征值问题基于Legendre-Galerkin逼近的一种有效的谱方法.首先利用Legendre多项式构造了一组适当的基函数使得离散变分形式中的矩阵是稀疏的,然后推导了2维及3维情形下离散变分形式基于张量积的矩阵形式,由此可以快速地计算出离散的特征值和特征向量.文章还给出了误差分析和数值试验,数值结果表明本文提出的方法是稳定和有效的.  相似文献   

8.
9.
In this paper, we deal with the numerical resolution of spectral discretization of the vorticity‐velocity‐pressure formulation of Stokes problem in a square or a cube provided with nonstandard boundary conditions, which involve the normal component of the velocity and the tangential components of the vorticity. Therefore, we propose two algorithms: the Uzawa algorithm and the global resolution. We implemented the two algorithms and compared their results. With global resolution, we obtained a very good accuracy with a small number of iteration.  相似文献   

10.
In this article, we combine mixed finite element method, multiscale discretization, and Rayleigh quotient iteration to propose a new adaptive algorithm based on residual type a posterior error estimates for the Stokes eigenvalue problem. Both reliability and efficiency of the error indicator are proved. The efficiency of the algorithm is also investigated using Chen's Innovation Finite Element Method (iFEM) package. Numerical results are satisfying.© 2014 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 31: 31–53, 2015  相似文献   

11.
We consider a upwinding mixed element method for a system of first order partial differential equations resulting from the mixed formulation of a general advection diffusion problem. The system can be used to model the transport of a contaminant carried by a flow. We use the lowest order Raviart-Thomas mixed finite element space. We show the first order convergence both for concentration and concentration flux in L2(Ω).  相似文献   

12.
A rounding error analysis for the symplectic Lanczos method is given to solve the large-scale sparse Hamiltonian eigenvalue problem. If no breakdown occurs in the method, then it can be shown that the Hamiltonian structure preserving requirement does not destroy the essential feature of the nonsymmetric Lanczos algorithm. The relationship between the loss of J-orthogonality among the symplectic Lanczos vectors and the convergence of the Ritz values in the symmetric Lanczos algorithm is discussed. It is demonstrated that under certain assumptions the computed J-orthogonal Lanczos vectors lose the J-orthogonality when some Ritz values begin to converge. Our analysis closely follows the recent works of Bai and Fabbender. Selected from Journal of Mathematical Research and Exposition, 2004, 24(1): 91–106  相似文献   

13.
In this article we consider the spectral Galerkin method with the implicit/explicit Euler scheme for the two‐dimensional Navier–Stokes equations with the L2 initial data. Due to the poor smoothness of the solution on [0,1), we use the the spectral Galerkin method based on high‐dimensional spectral space HM and small time step Δt2 on this interval. While on [1,∞), we use the spectral Galerkin method based on low‐dimensional spectral space Hm(m = O(M1/2)) and large time step Δt. For the spectral Galerkin method, we provide the standard H2‐stability and the L2‐error analysis. © 2007 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2007  相似文献   

14.
In this article we consider a spectral Galerkin method with a semi‐implicit Euler scheme for the two‐dimensional Navier‐Stokes equations with H2 or H1 initial data. The H2‐stability analysis of this spectral Galerkin method shows that for the smooth initial data the semi‐implicit Euler scheme admits a large time step. The L2‐error analysis of the spectral Galerkin method shows that for the smoother initial data the numerical solution u exhibits faster convergence on the time interval [0, 1] and retains the same convergence rate on the time interval [1, ∞). © 2005 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2005.  相似文献   

15.
This article studies the Dirichlet eigenvalue problem for the Laplacian equations △u = -λu, x ∈Ω, u = 0, x ∈ (δ)Ω, where Ω (∩) Rn is a smooth bounded convex domain. By using the method of appropriate barrier function combined with the maximum principle, authors obtain a sharp lower bound of the difference of the first two eigenvalues for the Dirichlet eigenvalue problem. This study improves the result of S.T.Yau et al.  相似文献   

16.
In this article, we consider the finite volume element method for the second‐order nonlinear elliptic problem and obtain the H1 and W1, superconvergence estimates between the solution of the finite volume element method and that of the finite element method, which reveal that the finite volume element method is in close relationship with the finite element method. With these superconvergence estimates, we establish the Lp and W1,p (2 < p ≤ ∞) error estimates for the finite volume element method for the second‐order nonlinear elliptic problem. © 2006 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2007  相似文献   

17.
In this article, we conduct an a posteriori error analysis of the two‐dimensional time‐dependent Stokes problem with homogeneous Dirichlet boundary conditions, which can be extended to mixed boundary conditions. We present a full time–space discretization using the discontinuous Galerkin method with polynomials of any degree in time and the ? 2 ? ?1 Taylor–Hood finite elements in space, and propose an a posteriori residual‐type error estimator. The upper bounds involve residuals, which are global in space and local in time, and an L 2‐error term evaluated on the left‐end point of time step. From the error estimate, we compute local error indicators to develop an adaptive space/time mesh refinement strategy. Numerical experiments verify our theoretical results and the proposed adaptive strategy.  相似文献   

18.
This article discusses a priori and a posteriori error estimates of discontinuous Galerkin finite element method for optimal control problem governed by the transport equation. We use variational discretization concept to discretize the control variable and discontinuous piecewise linear finite elements to approximate the state and costate variable. Based on the error estimates of discontinuous Galerkin finite element method for the transport equation, we get a priori and a posteriori error estimates for the transport equation optimal control problem. Finally, two numerical experiments are carried out to confirm the theoretical analysis.© 2017 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 33: 1493–1512, 2017  相似文献   

19.
We introduce a new method for computing eigenvalues of the Maxwell operator with boundary finite elements. On bounded domains with piecewise constant material coefficients, the Maxwell solution for fixed wave number can be represented by boundary integrals, which allows to reduce the eigenvalue problem to a nonlinear problem for determining the wave number along with boundary and interface traces. A Galerkin discretization yields a smooth nonlinear matrix eigenvalue problem that is solved by Newton's method or, alternatively, the contour integral method. Several numerical results including an application to the band structure computation of a photonic crystal illustrate the efficiency of this approach. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
In this paper, a new multilevel correction scheme is proposed to solve Stokes eigenvalue problems by the finite element method. This new scheme contains a series of correction steps, and the accuracy of eigenpair approximation can be improved after each step. In each correction step, we only need to solve a Stokes problem on the corresponding fine finite element space and a Stokes eigenvalue problem on the coarsest finite element space. This correction scheme can improve the efficiency of solving Stokes eigenvalue problems by the finite element method. As applications of this multilevel correction method, a multigrid method and an adaptive finite element technique are introduced for Stokes eigenvalue problems. Some numerical results are given to validate our schemes. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号