首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pseudomonas putida strain KT2442, harbouring the pWW0 TOL plasmid, was grown with a number of different homologous aromatic acids as carbon sources. Small samples of liquid culture supernatant were collected and directly analysed by 2D NMR spectroscopy. In all cases similar compounds with olefinic signals were observed to accumulate. To elucidate the structures of these compounds, 2D NMR experiments with 500 and 600 MHz spectrometers equipped with a CryoProbe (Bruker BioSpin) were performed on samples obtained from a culture growing on 4‐methylbenzoate and, for 13C spectroscopy, on 13C‐labelled 4‐methylbenzoate. In all cases a 1,2‐dihydroxycyclohexa‐3,5‐diene‐carboxylate derivative was identified. The use of this technique helped us to identify easily some metabolites that were released into the solution by bacteria and to follow their secretion as a function of time. The high sensitivity of the present approach allowed a clear and rapid acquisition of spectra, notwithstanding the low concentration of the compounds. The benefits of introducing the use of NMR cryoprobes to perform metabolic pathway studies is demonstrated. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

2.
A series of Li1-zNi1+zO2 materials have been synthesised by the coprecipitation route. An X-ray diffraction study was carried out on these materials using the Rietveld method to determine the departure from the ideal stoichiometry z, which ranges from 0 to 0.138. The actual Li/Ni ratio was also checked by chemical analyses using inductively coupled plasma (ICP) for each sample. The stoichiometric sample (z approximately 0) was obtained using a 15% Li excess. (6/7)Li NMR results from LiNiO2 (z approximately 0) show that the asymmetric shape of the NMR signal is due to anisotropy. Calculations give evidence that the paramagnetic dipolar interaction from the electron spins carried by Ni is anisotropic but does not completely explain the experimental anisotropy. (6)Li MAS NMR (magic angle spinning NMR) experiments and temperature standardisation NMR measurements unambiguously assign the isotropic position at +726 ppm. The static-echo NMR spectra of the non-stoichiometric Li1-zNi1+zO2 phases also exhibit an asymmetric shape whose width increases with the departure from the ideal stoichiometry z. (6/7)Li static and MAS NMR show that the 2zNi(2+) ions thus formed modify the dipolar interaction within the materials and also affect the Fermi contact interaction, since a distribution of Li environments is observed using (6)Li NMR for non-stoichiometric samples.  相似文献   

3.
The binding affinities at the human NK-1 receptor of two spirocyclic compounds were found to be similar despite being epimeric at a key stereocentre. This unexpected result prompted a thorough investigation of the solution conformations of the two compounds. This revealed that a conformational switch in the tetrahydrofuran ring enabled the C-3-aryl group to be equatorial in both cases, leading to a similar juxtaposition of the aryl rings.  相似文献   

4.
Complexation of lithium ions by three chromoionophoric calix[4]arenes has been studied by 1H and 7Li NMR spectroscopy. The signalling unit of the chromoionophores is the N-methylpyridinium(methyleneimino) group in conjugation with a phenolic group of the calixarene ring while the coordination spheres contain esteric (ethoxycarbonylmethoxy) or etheric (ethoxy, propoxy) units. 1H NMR and NOESY measurements suggest the dominance of cone conformations of the calixarene rings with slight, solvent-dependent distortions. Complexation occurs only in the presence of a weak base. The interaction with lithium ions causes a broadening of both the 1H and 7Li NMR signals. Analysis of the chemical shifts in the three complexes indicates a different coordination environment for the lithium with the calixarene containing esteric groups from those having etheric groups. This explains the differences in the stabilities of the lithium complexes of the two types of calixarenes.  相似文献   

5.
The 1H, 13C, 15N and 19F NMR spectra of nine DL-phenylalcoholamides bearing fluorine and chlorine as substituents of the phenyl ring are reported. All of them are active as anticonvulsants in pentylenetetrazole-induced seizures.  相似文献   

6.
7Li, 31P, and 19F solid-state nuclear magnetic resonance (NMR) spectroscopy was used to investigate the local arrangement of oxygen and fluorine in LiVPO4F1-yOy materials, interesting as positive electrode materials for Li-ion batteries. From the evolution of the 1D spectra versus y, 2D 7Li radiofrequency-driven recoupling (RFDR) experiments combined, and a tentative signal assignment based on density functional theory (DFT) calculations, it appears that F and O are not randomly dispersed on the bridging X position between two X–VO4–X octahedra (X = O or F) but tend to segregate at a local scale. Using DFT calculations, we analyzed the impact of the different local environments on the local electronic structure. Depending on the nature of the VO4X2 environments, vanadium ions are either in the +III or in the +IV oxidation state and can exhibit different distributions of their unpaired electron(s) on the d orbitals. Based on those different local electronic structures and on the computed Fermi contact shifts, we discuss the impact on the spin transfer mechanism on adjacent nuclei and propose tentative signal assignments. The O/F clustering tendency is discussed in relation with the formation of short VIVO vanadyl bonds with a very specific electronic structure and possible cooperative effect along the chain.  相似文献   

7.
1H and 13C nuclear magnetic resonance (NMR) chemical shifts of a tetrakis monoterpene indole alkaloid alasmontamine A with a molecular formula of C84H91N8O12 have been calculated at the PBE0/pcSseg-2//pcseg-2 level of theory on M06-2X/aug-cc-pVDZ geometry. In the course of the preliminary conformational search, six true minimum energy conformers were identified that can contribute to the actual conformation of this huge alkaloid. Calculated chemical shifts generally demonstrated a good agreement with available experimental data characterized with a corrected mean absolute error of 0.10 ppm for the range of about 7 ppm for protons and 1.1 ppm for the range of about 160 ppm for carbons.  相似文献   

8.
A selection of mono‐ and pseudo ortho di‐substituted octafluoro[2.2]paracyclophane derivatives were analyzed using 19F‐1H HOESY, 1H COSY and 19F COSY techniques. This resulted in the unambiguous assignment of the 19F and 1H NMR resonances, and also revealed interesting solvent effects and noteworthy coupling patterns for various JHH, JHF, and JFF interactions, including observable through bond 7JFF and 8JFF couplings. For the four mono‐substituted derivatives, the assignments were achieved through the combination of 19F‐1H HOESY, 1H COSY and 19F COSY techniques. The C2 symmetry of the six pseudo ortho di‐substituted derivatives that were examined produced simplified spectra, and careful inspection of the characteristic 1H coupling patterns led to the assignment of 1H signals. Therefore only 19F‐1H HOESY experiments were required to complete the assignments for those molecules. Refinements and alternative strategies for previous protocols are presented for the molecules that were less responsive to nuclear Overhauser effect (nOe) experiments. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
The ionic mobility in the temperature interval 180 to 480 K, structure, and electrophysical properties of rubidium-ammonium hexafluorozirconates Rb2−x (NH4) x ZrF6 (1.5 ≤ x ≤ 2.0) are studied by methods of the 19F, 1H NMR spectroscopy, x-ray structure analysis, differential thermal analysis, and impedance spectroscopy. Correlations between the composition of the cationic sublattice, the character of ionic motions, and the phase transition temperature (of the type order-disorder) are established in these compounds. The salient feature of the high-temperature modifications of these fluorozirconates with x ≥ 1.5 is the translation diffusion of ions inside the fluoride and ammonium sublattices and the 19F NMR spectra are characterized by monoaxial anisotropy of the magnetic shielding tensor of the fluorine nuclei. Fluorozirconates with x > 1.5 are shown to belong with the structural type (NH4)2ZrF6. The rubidium cations isomorphically replace the ammonium cations. The electrophysical characteristics of the compounds are examined in the temperature interval 300 to 480 K. It is established that the electroconductivity of these compounds increases with x. Original Russian Text ? V.Ya. Kavun, A.V. Gerasimenko, A.B. Slobodyuk, N.A. Didenko, N.F. Uvarov, V.I. Sergienko, 2007, published in Elektrokhimiya, 2007, Vol. 43, No. 5, pp. 563–570. Based on the paper delivered at the 8th Meeting “Fundamental Problems of Solid-State Ionics”, Chernogolovka (Russia), 2006.  相似文献   

10.
The (19)F NMR spectra of a series of fluorinated cyclopropanes, most of which contain chlorine or bromine on the ring, have been observed and analyzed. A scheme has been developed to assign the resonances and the molecular stereochemistry, based on substituent effects, comparison of related molecules, and isotope shifts induced by the halogens. Replacement of fluorine by chlorine shifts cis fluorine resonances to lower field, and bromine has an even greater downfield influence. However, the shift effect of bromine compared to chlorine on gem or trans fluorines is variable. The magnitude of the isotope shifts is found to be regularly related to the geometrical relationship of the halogen to the observed fluorine and thus makes a significant contribution to the fluorine assignments. The three-bond spin-spin coupling constants between fluorine atoms in cyclopropanes display unusual behavior and are not helpful for assignment of the fluorine resonances. The signs of the coupling constants have been investigated by spin-tickling experiments, and the previously developed relation of the coupling constant sign to its temperature dependence has been found to be violated for some molecules.  相似文献   

11.
Multinuclear ((1)H, (31)P, (19)F and (11)B) diffusion ordered spectroscopy (DOSY) technique has been applied to palladium nanoparticles systems dispersed in ionic liquids (ILs). Even if the nanoparticles themselves cannot be detected through NMR, observation of the solvent (methanol) and the IL ([BMI][PF(6)] or [BMI][NTf(2)]), their diffusion coefficients and their changes in the presence of nanoparticles allow us to draw significant assumptions about the organisation of palladium nanoparticles in the IL. For comparison, the corresponding molecular precursors ([PdCl(2)(cod)] or [Pd(2)(dba)(3)]) have been also studied.  相似文献   

12.
Quantitative 19F NMR (QNMR) was developed and employed to determine the amounts of four kinds of fluoropolyphosphates (FPPs) in a mixture containing sodium monofluoro-phosphate (MFP), sodium monofluoro-dipolyphosphate (MFDPP), sodium monofluoro-tripolyphosphate (MFTPP) and sodium difluoro-tripolyphosphate (DFTPP). The amounts of these ingredients cannot be measured by high-performance liquid chromatography (HPLC) because no high-purity standard samples are available. The main parameter “delay time (d1) between two scans” of affecting the response of NMR signal was determined by measuring longitudinal relaxation time (T1) to be 25 s. By using NaF as an internal reference to measure the amount of MFP solution with known concentration and then to compare the deviation between experiment value and real value, a simple and effective approach for checking out the validity of 19F QNMR method was carried out. Six experiments with different mole ratios of NaF/MFP over 200 times were repeated and the relative standard deviation (R.S.D.) of results is less than 2.0%, the limit of detection of 19F QNMR can reach to 1.0 mmol/L. NaF was used as an internal reference for the quantitative analysis of FPPs mixture. The amount of each FPP in FPPs mixture obtained by 19F QNMR was calculated and the R.S.D.s of results were less than 4.81%.  相似文献   

13.
In this report, our main focus is to introduce a set of one-dimensional (1D) NMR methods based on chemical shift, relaxation, and magnetization transfer, namely, NOE and chemical exchange involving selective pulse excitation to study the solution dynamics of drug in free and encapsulated state within polymeric microsphere. In this regard 5-fluorouracil (5-FU) loaded poly lactic-co-glycolic acid (PLGA) microspheres are prepared as model system via standard water-in-oil-in-water emulsification method. One-dimensional 1H and 19F nuclear magnetic resonance (NMR) spectra of 5-FU in presence of PLGA microspheres presented a significant change in linewidth and relaxation rates compared with free 5-FU confirming encapsulation. Furthermore, loss of coupling pattern in 1H and 19F NMR of PLGA encapsulated 5-FU as compared with free 5-FU suggests an enhanced –NH and –H2O protons exchange dynamics in the interior of the microsphere indicating hydrated microsphere cavity. Quantification of exchange dynamics in case of free and PLGA-encapsulated 5-FU was attempted employing 1D selective NOESY and 1D multiply selective inversion recovery experiments. Analysis of the exchange rates confirmed existence of more than one kind of water population within the cavity as mentioned in an earlier solid state NMR report.  相似文献   

14.
Chemical shift assignment of seven N‐substituted 6‐(4‐methoxyphenyl)‐7H‐pyrrolo[2, 3‐d]pyrimidin‐4‐amines, six of which are fluorinated, have been performed based on 1H, 13C, 19F, and 2D COSY, HMBC and HSQC experiments. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
Structurally simple rod-like π-conjugated mesogens with thiophene directly connected to phenyl, biphenyl, and fluorenone rings with terminal chains are synthesized respectively. The occurrence of smectic A/smectic C phases is concurred by a hot-stage optical polarising microscope (HOPM), differential scanning calorimetry (DSC), and X-ray diffraction (XRD). The static 1D and 2D 13C nuclear magnetic resonance (NMR) studies in the liquid crystalline phase are carried out to find the alignment-induced chemical shifts (AIS) and 13C−1H dipolar couplings. The orientational order parameters of the mesogens determined from 13C−1H dipolar couplings disclose that the long axis is not only collinear to the C3−C4 bond of the thiophene ring but also for the local axes of phenyl and biphenyl rings. For fluorenone-based mesogen, the molecular biaxiality is found to be high owing to the increased breadth of the molecule. The study unveils that the orientation of thiophene and the phenyl rings is similar in the current mesogens in stark contrast to mesogens, where thiophene is connected to phenyl rings through linking groups.  相似文献   

16.
The (1)H NMR spectra of a number of alcohols, diols and inositols are reported and assigned in CDCl(3), D(2)O and DMSO-d(6) (henceforth DMSO) solutions. These data were used to investigate the effects of the OH group on the (1)H chemical shifts in these molecules and also the effect of changing the solvent. Inspection of the (1)H chemical shifts of those alcohols which were soluble in both CDCl(3) and D(2)O shows that there is no difference in the chemical shifts in the two solvents, provided that the molecules exist in the same conformation in the two solvents. In contrast, DMSO gives rise to significant and specific solvation shifts. The (1)H chemical shifts of these compounds in the three solvents were analysed using the CHARGE model. This model incorporates the electric field, magnetic anisotropy and steric effects of the functional group for long-range protons together with functions for the calculation of the two- and three-bond effects. The long-range effect of the OH group was quantitatively explained without the inclusion of either the C--O bond anisotropy or the C--OH electric field. Differential beta and gamma effects for the 1,2-diol group needed to be included to obtain accurate chemical shift predictions. For DMSO solution the differential solvent shifts were calculated in CHARGE on the basis of a similar model, incorporating two-bond, three-bond and long-range effects. The analyses of the (1)H spectra of the inositols and their derivatives in D(2)O and DMSO solution also gave the ring (1)H,(1)H coupling constants and for DMSO solution the CH--OH couplings and OH chemical shifts. The (1)H,(1)H coupling constants were calculated in the CHARGE program by an extension of the cos(2)phi equation to include the orientation effects of electronegative atoms and the CH--OH couplings by a simple cos(2)phi equation. Comparison of the observed and calculated couplings confirmed the proposed conformations of myo-inositol, chiro-inositol, quebrachitol and allo-inositol. The OH chemical shifts were also calculated in the CHARGE program. Comparison of the observed and calculated OH chemical shifts and CH.OH couplings suggested the existence of intramolecular hydrogen bonding in a myo-inositol derivative.  相似文献   

17.
Solid‐state 1H → 19F and 19F → 1H cross‐polarization magic angle spinning (CP/MAS) NMR spectra have been investigated for a semicrystalline fluoropolymer, namely poly(vinylidene fluoride) (PVDF). The 1H → 19F CP/MAS spectra can be fitted by five Lorentzian functions, and the amorphous peaks were selectively observed by the DIVAM CP pulse sequences. Solid‐state spin‐lock experiments showed significant differences in TF and TH between the crystalline and amorphous domains, and the effective time constants, THF* and T*, which were estimated from the 1H → 19F CP curves, also clarify the difference in the strengths of dipolar interactions. Heteronuclear dipolar oscillation behaviour is observed in both standard CP and 1H → 19F inversion recovery CP (IRCP) experiments. The inverse 19F → 1H CP‐MAS and 1H → 19F CP‐drain MAS experiments gave complementary information to the standard 1H → 19F CP/MAS spectra in a manner reported in our previous papers for other fluoropolymers. The value of NF/NH (where N is a spin density) estimated from the CP‐drain curve is within experimental error equal to unity, which is consistent with the chemical structure. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

18.
The changes in the conformation and molecular mobility accompanied by a phase transition in the crystalline domain were analyzed for ethylene (E) and tetrafluoroethylene (TFE) copolymer, ETFE, using variable-temperature (VT) solid-state 19F magic angle spinning (MAS) and 1H --> 19F cross-polarization (CP)/MAS NMR spectroscopy. The shifts of the signals for fluorines in TFE units to higher frequency and the continuing decrease and increase in the T1rho(F) values suggest that conformational exchange motions exist in the crystalline domain between 42 and 145 degrees C. Quantum chemical calculations of magnetic shielding constants showed that the high-frequency shift of TFE units should be induced by trans to gauche conformational changes at the CH2-CF2 linkage in the E-TFE unit. Although the 19F signals of the crystalline domain are substantially overlapped with those of the amorphous domain at ambient probe temperature (68 degrees C), they were successfully distinguished by using the dipolar filter and spin-lock pulse sequences at 145 degrees C. The dipolar coupling constants for the crystalline domain, which can be estimated by fitting the dipolar oscillation behaviors in the 1H --> 19F CP curve, showed a significant decrease with increasing temperature from 42 to 145 degrees C. This is due to the averaging of 1H-19F dipolar interactions originating from the molecular motion in the crystalline domain. The increase in molecular mobility in the crystalline domain was clearly shown by VT T1rho(F) and 1H --> 19F CP measurements in the phase transition temperature range.  相似文献   

19.
Fat crystallisation in emulsions is a complex process. One of the important parameters is the solid fat content (SFC). Up to now, there is no standardised method to measure the SFC in emulsions, let alone to determine the SFC of the fat inside droplets, thus avoiding the signal of the aqueous phase. This work evaluates the capabilities of deconvolution of the free induction decay (FID)-Carr–Purcell–Meiboom–Gill (CPMG) signal of emulsions. Three models were evaluated. The first model was a combination of a Gaussian function and a bi-exponential function (GBE model). The second model combined a Gaussian function with multiple exponential functions (GME model). The last model contained multiple Gaussian functions and multiple exponential functions (MGME model). The latter two models used a simplified CONTIN analysis. Based on the analysis of the determination coefficient R2, the calculated water content and the estimated SFC of nonemulsified two-phase systems, the GBE model was selected to analyse the FID-CPMG signal of emulsified systems. However, the results obtained with the other models did not differ substantially, and hence, they could be used to obtain a full relaxation time distribution. When the GBE model was applied on different emulsion systems, no significant differences in estimated SFC of the fat phase were found, thus indicating that the emulsion formulation (i.e. water-in-oil [W/O], oil-in-water [O/W] or water-in-oil-in-water [W/O/W]) only had a minor effect on the SFC in the systems considered here.  相似文献   

20.
We prepared novel ionic liquid submicron particles (ILSPs) in water by emulsifying the ionic liquid (IL) N-(2-methoxyethyl)-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide (Pyr12O1TFSI), which is immiscible with water, with the nonionic surfactants Tween 20 and Span 80. The mean particle size and zeta potential of the ILSPs were about 580?nm and ?30?mV, respectively. The ILSPs were characterized using 1H and 19F nuclear magnetic resonance (NMR) spectroscopic methods. The chemical shifts of the Pyr12O1+ cation and TFSI? anion in the 1H and 19F NMR spectra of the ILSP suspension were consistent with those corresponding to pure Pyr12O1TFSI. This indicated that most of the Pyr12O1TFSI was still in the IL state in the ILSP suspension. In addition, 1H–1H nuclear Overhauser effect correlated spectroscopic measurements showed that the ILSP droplets contained Pyr12O1TFSI in the neat IL steric state even in the ILSP suspension, and Pyr12O1TFSI species localized in the droplet surfaces interacted with the hydrophobic acyl side chains of the surfactants. These NMR spectroscopic results show that the ILSPs formed an IL-in-water microemulsion in which droplets of neat Pyr12O1TFSI were surrounded by the two surfactants, that is, Tween 20 and Span 80.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号