首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Carbon/carbon composites synthesis involves the deposition of a matrix of pyrocarbon produced by the pyrolysis of a gaseous hydrocarbon in a preform made of carbon fibers. This work describes an experimental and modeling study of the formation of pyrocarbon obtained by the pyrolysis of propane. The pyrolysis of propane is carried out in a perfectly stirred reactor at low pressure (2.6 kPa) in a wide range of temperature (1173–1298 K) with a residence time of 1 s. During the pyrolysis, the pyrocarbon is quantified by weighing and 29 other products of propane pyrolysis are also analysed by Gas-Chromatography (GC). In order to reproduce the experimental deposit of pyrocarbon but also the gas phase species, an original way of modeling the deposition of pyrocarbon, which contains a homogeneous model completed with lumped heterogeneous reactions, is proposed. This model tries to target which species gives what pyrocarbon although what really happens at the carbon fibers surface remains unknown. Two kinds of reactions of deposition are discussed; those involving small gaseous unsaturated species such as C2H2 and those involving large species (≥C6). The results of modeling seem to show, in agreement with the literature, that the pyrocarbon deposition could be quantitatively explained by the deposition of small unsaturated species.  相似文献   

2.
Propanal is an aldehyde intermediate formed during the hydrocarbon combustion process. Potentially, the use of oxygenated biofuels reduces greenhouse gas emissions; however, it also results in increased toxic aldehyde by‐products, mainly formaldehyde, acetaldehyde, acrolein, and propanal. These aldehydes are carcinogenic, and therefore it is important to understand their formation and destruction pathways in combustion systems. In this work, ignition delay times were measured behind reflected shock waves for stoichiometric (Φ = 1) mixtures of propanal (CH3CH2CHO) and oxygen (O2) in argon bath gas at temperatures of 1129 K < T < 1696 K and pressures around 1 and 6 atm. Measurements were conducted using the kinetics shock tube facility at the University of Central Florida. Current results were compared to available data in the literature as well as to the predictions of three propanal combustion kinetic models: Politecnico di Milano (POLIMI), National University of Ireland at Galway, and McGill mechanisms. In addition, a continuous wave‐distributed feedback interband cascade laser centered at 3403.4 nm was used for measuring methane (CH4) and propanal time histories behind the reflected shock waves during propanal pyrolysis. Concentration time histories were obtained at temperatures between 1192 and 1388 K near 1 atm. Sensitivity analysis was carried for both ignition delay time and pyrolysis measurements to reveal the important reactions that were crucial to predicting the current experimental results. Adjustments to the POLIMI mechanism were adopted to better match the experimental data. Further research was suggested for the H abstraction reaction rates of propanal. In addition to extending the temperature and pressure region of literature ignition delay times, we provide the first high‐temperature species concentration time histories during propanal pyrolysis.  相似文献   

3.
The autoignition and pyrolysis of two C5 ethers, methyl tert butyl ether (MTBE) and 2-methyltetrahydrofuran (2-MTHF), are investigated using the shock tube reactor. The experiments are carried out at pressures of 3.5 and 12 atm at temperatures above 1000 K with argon as a diluent gas. By means of direct laser absorption, carbon monoxide time histories and associated chemical kinetic timescales are also determined. It is observed that the competition between ignition and pyrolysis times depends on the temperature and equivalence ratio of the ignition mixture, such that there is a temperature above which pyrolysis predominates oxidative kinetics. This crossover temperature shifts toward higher temperatures for reactive systems with a fixed fuel concentration but higher oxygen content. The resulting experimental observations are also compared with predictions of existing chemical kinetic models from the literature. The results point to differences in chemical reactivity, such that in pyrolysis conditions, the reactivity of the cyclic ether, 2-MTHF, is generally higher than that of the aliphatic ether, MTBE. While agreement between experimental observations and model predictions is observed under certain conditions, significant variance between observations and predictions is observed under other conditions. With respect to prediction of the pyrolysis time used to capture the global kinetics of pyrolysis, it is observed that the relation of this time to the time needed to attain 90% of the equilibrium CO concentration varies greatly with the result that the models used in this work generally predict a faster initial formation of CO but a much slower approach to the equilibrium concentration. This is thought to arise from the slow transformation of intermediate CH2O and CH2CO to CO. The chemical kinetic models considered in this work are therefore not capable of predicting the CO time histories during pyrolysis.  相似文献   

4.
Titanium carbide powders synthesized in thermal plasma reactors are virtually always contaminated by soot. Equilibrium modeling predicts a viable process window without soot formation; however, this has not been achieved in practice. A numerical model incorporating chemical kinetics, nucleation and growth, and soot formation mechanisms has been developed to investigate this process. The chemical kinetic scheme teas based on ethylene pyrolysis and methane combustion with additional reactions to account for titanium-based molecules and the free carbon species found at plasma temperatures. Nucleation and .soot formation were based on simple kinetic models. The governing equations were integrated through time using typical temperature-time histories found by computational fluid dynamic (CFD) modeling of a radio frequency plasma torch. The results indicate that the synthesis is governed by interactions between several parallel processes and that there is a delicate balance between reactant stoichiometry, system pressure, cooling rate, product formation, and soot formation. This balance may be a limiting feature of ceramic carbide production in thermal plasma reactors.  相似文献   

5.
The nonisothermal nature of hydrocarbon pyrolysis explains the differences in the critical temperatures of soot formation in the experimental studies of these processes. When reaction heats are taken into account, the critical temperatures become close to 1600 K for all the systems studied. The estimated standard enthalpy of carbon atom formation in the composition of soot particles is δHf, z. ≈ 11 ±6 kJ/mol. A kinetic model is proposed for soot formation in ethylene pyrolysis that describes the experimental data. The calculated temperature of soot particles may differ substantially depending on the choice of a model for energy exchange in collisions.  相似文献   

6.
Wagner  H. Gg.  Emelianov  A. V.  Eremin  A. V.  Jander  H. 《Kinetics and Catalysis》2003,44(4):463-470
Various carbon particles formed by the pyrolysis of C3O2 and C2H2 behind shock waves in the temperature range 1200–3800 K are studied. The formation of the condensed carbon particles is observed directly by the multichannel detection of the time profiles of the extinction of the medium in the UV, visible, and near-IR spectral regions. The samples of carbon material deposited on the walls of a shock tube after an experiment are analyzed using transmission electron microscopy with different resolutions and electron microdiffraction. Particles formed from C3O2 and C2H2 at 1500–2000 K are 10–30 nm in size and look like usual soot. The absence of molecular hydrogen in C3O2 only results in faster formation and graphitization. At 2100–2600 K, the formation of particles is retarded, and the yield of the carbon particles decreases for both substances. After experiments on pyrolysis of C3O2 at these temperatures, giant spherical particles up to 700 nm in size are found on the walls of the shock tube. Carbon particles formed at the highest temperatures (2700–3200 K) in C3O2 pyrolysis have the high degree of crystallinity of particles.  相似文献   

7.
减少生物质在热转化反应器中Cl与碱金属K和Na以气态组元逸出可有效遏制积灰、腐蚀等现象和减少污染气体排放。采用化学热力学平衡分析方法,在400K~1600K研究了秸秆、树皮、木屑、废木和橄榄渣五种生物质在过剩空气系数分别为0、0.4、0.8的热解和气化过程中Cl与碱金属K和Na的赋存形态变化及逸出特性。结果表明,Cl在热解和气化过程中主要是以KCl(s)、HCl(g)、KCl(g)、(KCl)2(g)和NaCl(g)化合物赋存并相互转化;在800K~1000K时,含Cl固态组元逐渐转化为气态组元;K和Na在900K时开始以气态组元逸出,且热解过程有少量KCN(g)和NaCN(g)逸出,而气化过程,温度大于1000K随过剩空气系数的增加,KCl(g)、K(g)和Na(g)等气态组元量逐渐减少,逐渐转化为NaCl(g)、KOH(g)和NaOH(g);减少Cl和碱金属K和Na逸出的理论最佳热解和气化温度分别为800K和900K。  相似文献   

8.
Sorption isotherms of nitrogen, methane (in the pressure range of 0.1–40 MPa), ethane (0.1–3.7MPa), propane (0.01–1 MPa), butane (0.01–0.2 MPa), and carbon dioxide (0.1–6 MPa) are measured on two adsorbents with kerogen contents of 16 and 75% at temperatures of 303, 323, 343 K. Adsorption volumes are calculated for all adsorption systems using two independent methods. The BET technique is used to determine the surface area values of the two adsorbents on the basis of sorption data for ethane, propane, butane, and carbon dioxide. The initial and isosteric adheat of sorption values are calculated on the basis of sorption isotherms of ethane, propane, butane, carbon dioxide measured at three temperatures. It is found from comparing the dependences of isosteric heat of sorption on the two adsorbents that molecules of the above gases diffuse into its bulk (adsorbent 2) in addition to sorbing on the outside surface formed by kerogen molecules, while sorption of the same gases on the rock (adsorbent 1) is similar to sorption on a smooth hard adsorbent surface.  相似文献   

9.
The thermal decomposition of 1,3-butadiene, 1,3-butadiene-1,1,4,4-d(4), 1,2-butadiene, and 2-butyne at temperatures up to 1520 K was carried out by flash pyrolysis on a approximately 20 mus time scale. The reaction products were isolated by supersonic expansion and detected by single-photon (lambda = 118 nm) vacuum-ultraviolet time-of-flight mass spectrometry (VUV-TOFMS). Direct detection of CH(3) and C(3)H(3), as well as C(3)H(4), C(4)H(4), and C(4)H(5) products, provides insight into the initial steps involved in the complex pyrolysis of these C(4)H(6) species below T = 1500 K. The similar pyrolysis product distributions for the C(4)H(6) isomers on such a short time scale support the previously proposed mechanism of facile isomerization of these species. Isomerization of 1,3-butadiene to 1,2-butadiene and subsequent C-C bond fission of 1,2-butadiene to produce CH(3) and C(3)H(3) (propargyl) are most likely the primary initial radical production channel in the 1,3-butadiene pyrolysis.  相似文献   

10.
Pyrolysis of benzene at 30 Torr was studied from 1360 K to 1820 K in this work. Synchrotron vacuum ultraviolet photoionization mass spectrometry was employed to detect the pyroly-sis products such as radicals, isomers and polycyclic aromatic hydrocarbons, and measure their mole fraction profiles versus temperature. A low-pressure pyrolysis model of benzene was developed and validated by the experimental results. Rate of production analysis was performed to reveal the major reaction networks in both fuel decomposition and aromatic growth processes. It is concluded that benzene is mainly decomposed via H-abstraction reaction to produce phenyl and partly decomposed via unimolecular decomposition reac-tions to produce propargyl or phenyl. The decomposition process stops at the formation of acetylene and polyyne species like diacetylene and 1,3,5-hexatriyne due to their high thermal stabilities. Besides, the aromatic growth process in the low-pressure pyrolysis of benzene is concluded to initiate from benzene and phenyl, and is controlled by the even carbon growth mechanism due to the inhibited formation of C5 and C7 species which play important roles in the odd carbon growth mechanism.  相似文献   

11.
The decomposition of propane diluted in air has been investigated using a pulsed high-voltage dielectric barrier discharges reactor. Effects of the temperature (from 300 to 800 K) and humidity in air on propane conversion and on produced species are studied. CO and CO2 are the two main carbon species produced but other carbon species can be also obtained as functions of electrical parameters or temperature. Total decomposition of inlet propane to CO2 is possible when propane is diluted in wet air from 600 K. Thermal energy is an important parameter to limit the energy density injected in the plasma reactor and to reduce the total energetic cost keeping a high propane decomposition yield.  相似文献   

12.
利用傅里叶变换红外光谱仪、激光共焦显微拉曼光谱仪和TGA Q500热分析仪对生物油蒸馏残渣及其在不同温度处理后的热解焦炭理化性质进行表征,并对其热失重特性进行分析。结果表明,生物油蒸馏残渣主要是由脂肪族、芳香族和低聚糖类等有机化合物组成;在氮气氛围下热解主要分为三个阶段:30-145℃为小分子物质挥发析出阶段145-550℃为大分子物质裂解和氧化阶段,550-750℃为焦炭产生阶段;热处理过程中各类物质逐步有序热解析出,同时固体产物石墨化程度随着热处理终止温度的升高而升高。  相似文献   

13.
The results of experiments on the isothermic pyrolysis of acetylene, benzene, and diacetylene in a flow reactor near a low-temperature threshold of soot formation are presented. Diacetylene showed a much higher ability to form soot, coke, and tar than the other hydrocarbons. The threshold temperature of soot formation from diacetylene (800 K) was found to be lower than the threshold temperatures for benzene (1230 K) and acetylene (1200 K) for the same pyrolysis time (0.17 s) and equal hydrocarbon concentrations (on the basis of C atoms). The induction periods of soot formation for acetylene and benzene at 1100–1200 K, which were estimated from experiments, correlated well with literature data extrapolated from the high-temperature region. Invisible soot particles (0.3-0.5 Μm) and particles at different steps of carbonization were found among the products of low-temperature pyrolysis. Experimental data were analyzed and compared within the framework of two soot formation theories presented in the literature (the “acetylene” and “aromatic” theories). The contribution of the process of polyyne polymerization in a gas phase to the formation of a soot aerosol is discussed.  相似文献   

14.
Carbon film coatings have been produced by a hot‐wall chemical vapor deposition (CVD) method under moderate conditions from pyrolysis of a mixture of propane and argon on an Fe(110) substrate at temperatures of 800–900 °C for different deposition times. The effects of temperature and reaction time on the growth of the carbon films were studied. Field‐emission scanning electron microscopy (FESEM), Raman microscopy, Auger electron spectroscopy (AES) and x‐ray diffraction methods have been performed to study the surface morphologies, growth features and microstructures of the carbon film coatings. The FESEM analyses indicated that carbon films on an Fe substrate consisted of flat‐layer and filamentous morphologies. Raman and AES analyses showed that the carbon initially was crystalline but the degree of disorder in the top layer of the carbon film increased with increasing deposition temperature. High‐resolution transmission electron microscopy studies are also in agreement with Raman results. The same trend was observed when the deposition time was increased from 5 to 30 min. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

15.
 用原位共焦显微拉曼光谱技术考察了丙烷选择氧化反应中Ag-M\r\no-P-O催化剂的结构,讨论了催化剂动态结构的成因及其对催化剂性\r\n能的影响.实验结果表明,在773K和n(C3H8)∶n(O2)∶n(N2)=\r\n3∶1∶4的反应条件下,Ag-Mo-P-O催化剂中的Mo-O物种可转化为A\r\ngMoO2PO4中的Mo-O物种(多钼酸根),此时催化剂对丙烷选择氧化具\r\n有较高的催化活性.催化剂中Mo-O物种的转化是由MoO3中Mo-O物种和\r\nAgMoO2PO4中Mo-O物种的结构特性决定的.AgMoO2PO4中的Mo-O物种具\r\n有较强的参与MarsvanKrevelen氧化-还原循环的能力,可能是丙烷选\r\n择氧化反应的活性物种.  相似文献   

16.
The results on a dissociation behavior of propane hydrates prepared from "dry water" and contained unreacted residual water in the form of ice inclusions or supercooled liquid water(water solution of gas) were presented for temperatures below 273 K.The temperature ramping or pressure release method was used for the dissociation of propane hydrate samples.It was found that the mechanism of gas hydrate dissociation at temperatures below 273 K depended on the phase state of unreacted water in the hydrate sample.Gas hydrates dissociated into ice and gas if the ice inclusions were in the hydrate sample.The samples of propane hydrates with inclusions of unreacted supercooled water only(without ice inclusions) dissociated into supercooled water and gas below the pressure of the supercooled water-hydrate-gas metastable equilibrium.  相似文献   

17.
澳大利亚烟煤热解的拉曼光谱研究   总被引:2,自引:0,他引:2  
采用拉曼光谱考察了澳大利亚烟煤在常压、温度为298~1 473 K条件下,不同热解气氛(Ar和N2)下的热解性能。结合AD/Aall、AG/Aall、WG以及PG-PD等表征参数分析发现,澳大利亚烟煤的热解可以分为三个阶段:298~873 K为固有小分子和大分子键能较弱处断裂分解产生的小分子化合物的析出沉积和挥发;873~1 273 K为大分子化合物裂解挥发和炭化;1 273~1 473 K为焦炭的石墨化。在N2和Ar气氛经1 473 K热处理后,焦炭的不同杂化结构的碳相对含量呈现明显差异。不同保温时间下,其煤焦碳结构演变趋势相似,但保温时间越长,越有利于小分子挥发分在较低温度的挥发。  相似文献   

18.
Woodceramics, a carbon/carbon composite of plant-originated carbon reinforced by glassy carbon from phenolic resin, was prepared from apple pomace at carbonizing temperatures of 1073 K (AWC800) and 1473 K (AWC1200), and characterized by thermoanalytical methods and X-ray diffraction (XRD). Simultaneous differential scanning calorimetry (DSC) and thermogravimetric (TG) showed complicated overlapping reactions similar to those of coal. The initial temperature of pyrolysis was obtained by fitting logistic functions to observed TG data. The results suggested that AWC1200 contained more volatile matter than AWC800. In an inert atmosphere, complicated devolatilization takes place. In an oxidizing atmosphere, thermal change occurs roughly in four steps: desorption of physically adsorbed matter; pyrolysis into aliphatic and aromatic fragments; ignition; combustion of char. The oxidation resistance of AWC1200 was superior to AWC800.  相似文献   

19.
碳前驱体CH3ArCH2NH2的热解性能及动力学研究   总被引:3,自引:1,他引:2  
通过密闭压力容器法、常压DSC、高压DSC及紫外分光光度定量分析法等实验手段,对液相沉积法制碳/碳复合材料用碳前驱体CH3ArCH2NH2的热裂解行为进行了研究,获得不同温度、不同压力下该碳前驱体的热分解温度和残碳率,用等温动力学和非等温动力学方法获得了热裂解反应的表观活化能,实验结果表明,常压热裂解温度大约为530.15-556.55K,1-3MPa的高压范围内的热裂解温度大约在618.34-675.49K,密闭压力容器中的残碳率为56.23%,常压下的残碳率为28.96%-36.47%,而高压下残碳率可达59.11%,根据基辛格等方法获得了等温条件下和非等温条件下热裂解反应的表观活化能Ea分别为206.78kJ/mol和183.93kJ/mol, 反应级数N~1.  相似文献   

20.
Gold nanoparticles supported on a microporous titanosilicate (TS-1) were found to be highly selective (95%) towards the formation of acetone and isopropanol from propane, O(2), and H(2) at moderate temperatures (443 K).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号