首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Based on the Pfaffian derivative formula and Hirota bilinear method, the Pfaffian solutions to (3 + 1)-dimensional Jimbo–Miwa equation are obtained under a set of linear partial differential condition. Moreover, we extend the linear partial differential condition and proved that (3 + 1)-dimensional Jimbo–Miwa equation has extended Pfaffian solutions. As examples, special exact two-soliton solution and three-soliton solution are computed and plotted. Our results show that (3 + 1)-dimensional Jimbo–Miwa equation has Pfaffian solutions like BKP equation.  相似文献   

2.
Theoretical and Mathematical Physics - We use the method of Lie symmetry analysis to investigate the properties of a (2+1)-dimensional KdV–mKdV equation. Using the Ibragimov method, which...  相似文献   

3.
In this paper, the extended hyperbolic function method is used for analytic treatment of the (2 + 1)-dimensional generalized Nizhnik–Novikov–Veselov (GNNV) system. We can obtained some new explicit exact solitary wave solutions, the multiple nontrivial exact periodic travelling wave solutions, the soliton solutions and complex solutions. Some known results in the literatures can be regarded as special cases. The methods employed here can also be used to solve a large class of nonlinear evolution equations.  相似文献   

4.
In this paper, we construct explicit exact solutions for the coupled Boiti–Leon–Pempinelli equation (BLP equation) by using a extended tanh method and symbolic computation system Mathematica. By means of the method, many new exact travelling wave solutions for the BLP system are successfully obtained. the extended tanh method can be applied to other higher-dimensional coupled nonlinear evolution equations in mathematical physics.  相似文献   

5.
Based on Hirota bilinear method, four kinds of localized waves, solitons, breathers, lumps and rogue waves of the extended (3+1)-dimensional Jimbo–Miwa equation are constructed. Breathers are obtained through choosing appropriate parameters on soliton solutions, while lumps and rogue waves are derived via the long wave limit on the soliton solutions. The energy, phase shift, shape, and propagation direction of these localized waves can be influenced and controlled by parameters. Considering mixed cases of the above four types of solutions, we also give many kinds of interaction solutions in the same plane with different parameters or different planes with the same parameters. Dynamical characteristics of these localized waves and interaction solutions are further analyzed and vividly demonstrated through figures.  相似文献   

6.
We obtain closed-form exact solutions to the 1 + 1 Born–Infeld equation arising in nonlinear electrodynamics. In particular, we obtain general traveling wave solutions of one wave variable, solutions of two wave variables, similarity solutions, multiplicatively separable solutions, and additively separable solutions. Then, putting the Born–Infeld model into correspondence with the minimal surface equation using a Wick rotation, we are able to construct complex helicoid solutions, transformed catenoid solutions, and complex analogues of Scherk’s first and second surfaces. Some of the obtained solutions are new, whereas others are generalizations of solutions in the literature. These exact solutions demonstrate the fact that solutions to the Born–Infeld model can exhibit a variety of behaviors. Exploiting the integrability of the Born–Infeld equation, the solutions are constructed elegantly, without the need for complicated analytical algorithms.  相似文献   

7.
By the modified CK’s direct method, the symmetry groups theorem of a (2+1)-dimensional generalized Broer–Kaup system is derived. Based upon the results, Lie point symmetry groups and new exact solutions of a (2+1)-dimensional generalized Broer–Kaup system are obtained.  相似文献   

8.
A new method to solve the nonlinear evolution equations is presented, which combines the two kind methods – the tanh function method and symmetry group method. To demonstrate the method, we consider the (2 + 1)-dimensional cubic nonlinear Schrödinger (NLS) equation. As a result, some novel solitary solutions of the Schrödinger equation are obtained. And graphs of some solutions are displayed.  相似文献   

9.
With the aid of symbolic computation, the new generalized algebraic method is extended to the (1 + 2)-dimensional nonlinear Schrödinger equation (NLSE) with dual-power law nonlinearity for constructing a series of new exact solutions. Because of the dual-power law nonlinearity, the equation cannot be directly dealt with by the method and require some kinds of techniques. By means of two proper transformations, we reduce the NLSE to an ordinary differential equation that is easy to solve and find a rich variety of new exact solutions for the equation, which include soliton solutions, combined soliton solutions, triangular periodic solutions and rational function solutions. Numerical simulations are given for a solitary wave solution to illustrate the time evolution of the solitary creation. Finally, conditional stability of the solution in Lyapunov’s sense is discussed.  相似文献   

10.
We demonstrate that four solutions from 13 of the (3 + 1)-dimensional Kadomtsev–Petviashvili equation obtained by Khalfallah [1] are wrong and do not satisfy the equation. The other nine exact solutions are the same and all “new” solutions by Khalfallah can be found from the well known solution.  相似文献   

11.
In this paper, the (N + 1)-dimensional sine–cosine-Gordon equations are studied. The existence of solitary wave, kink and anti-kink wave, and periodic wave solutions are proved, by using the method of bifurcation theory of dynamical systems. All possible bounded exact explicit parametric representations of the above travelling solutions are obtained.  相似文献   

12.
In the present paper Lie symmetry group method is applied to find new exact invariant solutions for Klein–Gordon–Fock equation with central symmetry. The found invariant solutions are important for testing finite-difference computational schemes of various boundary value problems of Klein–Gordon–Fock equation with central symmetry. The classical admitted symmetries of the equation are found. The infinitesimal symmetries of the equation are used to find the Riemann function constructively.  相似文献   

13.
14.
15.
A method is proposed by extending the linear traveling wave transformation into the nonlinear transformation with the (G′/G)-expansion method. The non-traveling wave solutions with variable separation can be constructed for the (2 + 1)-dimensional Broer–Kaup equations with variable coefficients via the method. A novel class of fractal soliton, namely, the cross-like fractal soliton is observed by selecting appropriately the arbitrary functions in the solutions.  相似文献   

16.
In this paper, multiple lump solutions of the (2+1)-dimensional Konopelchenko–Dubrovsky equation are obtained by means of the Hirota bilinear method. With the aid of positive quartic-quadratic-functions, we can get the 1-lump solutions, 3-lump solutions, and 6-lump solutions. Via the density plots and three-dimensional plots, the dynamic properties of multiple lump solutions are discussed by choosing the appropriate parameters. It is expected that our results are valuable for revealing the high-dimensional dynamic phenomenon of the nonlinear evolution equations.  相似文献   

17.
By using the Hirota’s bilinear transformation method and direct variable separation assumption, a new (2 + 1)-dimensional Sine–Gordon equation with self-consistent sources is derived for the first time. Correspondingly, a nonlinear variable separation solution included two lower-dimensional arbitrary functions is obtained.  相似文献   

18.
The repeated homogeneous balance method is used to construct new exact traveling wave solutions of the (3 + 1) dimensional Kadomtsev–Petviashvili (KP) equation, in which the homogeneous balance method is applied to solve the Riccati equation and the reduced nonlinear ordinary differential equation, respectively. Many new exact traveling wave solutions are successfully obtained, which contain soliton-like and periodic-like solutions. This method is straightforward and concise, and it can be also applied to other nonlinear evolution equations.  相似文献   

19.
In this paper the (3+1)-dimensional Boiti–Leon–Manna–Pempinelli (BLMP) equation is investigated. The integrability test is performed yielding a positive result. Through the Painlevé–Bäcklund transformation, we derive four types of lump-kink solutions composed of two quadratic functions and N exponential functions. It is shown that fission and fusion interactions occur in the lump-kink solutions. Furthermore, a new variable separation solution with two arbitrary functions is obtained, the localized excitations including lumps, dromions and periodic waves are analyzed by some graphs.  相似文献   

20.
We study single and coupled first-order differential equations (ODEs) that admit symmetries with tangent vector fields, which satisfy the N-dimensional Cauchy–Riemann equations. In the two-dimensional case, classes of first-order ODEs which are invariant under Möbius transformations are explored. In the N dimensional case we outline a symmetry analysis method for constructing exact solutions for conformal autonomous systems. A very important aspect of this work is that we propose to extend the traditional technical usage of Lie groups to one that could provide testable predictions and guidelines for model-building and model-validation. The Lie symmetries in this paper are constrained and classified by field theoretical considerations and their phenomenological implications. Our results indicate that conformal transformations are appropriate for elucidating a variety of linear and nonlinear systems which could be used for, or inspire, future applications. The presentation is pragmatic and it is addressed to a wide audience.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号