首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 464 毫秒
1.
In this study, a mathematical, fractional‐order model was developed for B cell chronic lymphocytic leukemia, with immune system, and then analyzed. Interactions between B leukemia cells, natural killer cells, cytotoxic T cells, and T‐helper cells are considered to be incorporated into a system consisting of four fractional differential equations. For estimation of the parameters, clinical data of six patients were used. By numerical solution of the system, the interactions between the leukemia cell population and the immune system cell populations for values of α ∈ (0,1) at different times were explained. By determining points of equilibrium and stability of the system were met. Bifurcation analysis showed that use of the fractional‐order model, figure out unpredictable behaviors of the system such as saddle‐node, bistability and hysteresis phenomenon occurred in the system by changing the values of some of the parameters, it was predictable.  相似文献   

2.
In this paper, we investigate the dynamical behavior of two nonlinear models for viral infection with humoral immune response. The first model contains four compartments; uninfected target cells, actively infected cells, free virus particles and B cells. The intrinsic growth rate of uninfected cells, incidence rate of infection, removal rate of infected cells, production rate of viruses, neutralization rate of viruses, activation rate of B cells and removal rate of B cells are given by more general nonlinear functions. The second model is a modification of the first one by including an eclipse stage of infected cells. We assume that the latent-to-active conversion rate is also given by a more general nonlinear function. For each model we derive two threshold parameters and establish a set of conditions on the general functions which are sufficient to determine the global dynamics of the models. By using suitable Lyapunov functions and LaSalle’s invariance principle, we prove the global asymptotic stability of the all equilibria of the models. We perform some numerical simulations for the models with specific forms of the general functions and show that the numerical results are consistent with the theoretical results.  相似文献   

3.
Infection with HIV-1, degrading the human immune system and recent advances of drug therapy to arrest HIV-1 infection, has generated considerable research interest in the area. Bonhoeffer et al. (1997) [1], introduced a population model representing long term dynamics of HIV infection in response to available drug therapies. We consider a similar type of approximate model incorporating time delay in the process of infection on the healthy T cells which, in turn, implies inclusion of a similar delay in the process of viral replication. The model is studied both analytically and numerically. We also include a similar delay in the killing rate of infected CD4+ T cells by Cytotoxic T-Lymphocyte (CTL) and in the stimulation of CTL and analyse two resulting models numerically.The models with no time delay present have two equilibria: one where there is no infection and a non-trivial equilibrium where the infection can persist. If there is no time delay then the non-trivial equilibrium is locally asymptotically stable. Both our analytical results (for the first model) and our numerical results (for all three models) indicate that introduction of a time delay can destabilize the non-trivial equilibrium. The numerical results indicate that such destabilization occurs at realistic time delays and that there is a threshold time delay beneath which the equilibrium with infection present is locally asymptotically stable and above which this equilibrium is unstable and exhibits oscillatory solutions of increasing amplitude.  相似文献   

4.
In order to obtain a comprehensive form of mathematical models describing nonlinear phenomena such as HIV infection process and AIDS disease progression, it is efficient to introduce a general class of time-dependent evolution equations in such a way that the associated nonlinear operator is decomposed into the sum of a differential operator and a perturbation which is nonlinear in general and also satisfies no global continuity condition. An attempt is then made to combine the implicit approach (usually adapted for convective diffusion operators) and explicit approach (more suited to treat continuous-type operators representing various physiological interactions), resulting in a semi-implicit product formula. Decomposing the operators in this way and considering their individual properties, it is seen that approximation–solvability of the original model is verified under suitable conditions. Once appropriate terms are formulated to describe treatment by antiretroviral therapy, the time-dependence of the reaction terms appears, and such product formula is useful for generating approximate numerical solutions to the governing equations. With this knowledge, a continuous model for HIV disease progression is formulated and physiological interpretations are provided. The abstract theory is then applied to show existence of unique solutions to the continuous model describing the behavior of the HIV virus in the human body and its reaction to treatment by antiretroviral therapy. The product formula suggests appropriate discrete models describing the dynamics of host pathogen interactions with HIV1 and is applied to perform numerical simulations based on the model of the HIV infection process and disease progression. Finally, the results of our numerical simulations are visualized and it is observed that our results agree with medical and physiological aspects.  相似文献   

5.
CD4 T cells play a fundamental role in the adaptive immune response including the stimulation of cytotoxic lymphocytes (CTLs). Human immunodeficiency virus (HIV) which infects and kills CD4 T cells causes progressive failure of the immune system. However, HIV particles are also reproduced by the infected CD4 T cells. Therefore, during HIV infection, infected and healthy CD4 T cells act in opposition to each other, reproducing virus particles and activating and stimulating cellular immune responses, respectively. In this investigation, we develop and analyze a simple system of four ordinary differential equations that accounts for these two opposing roles of CD4 T cells. The model illustrates the importance of the CTL immune response during the asymptomatic stage of HIV infection. In addition, the solution behavior exhibits the two stages of infection, asymptomatic and final AIDS stages. In the model, a weak immune response results in a short asymptomatic stage and faster development of AIDS, whereas a strong immune response illustrates the long asymptomatic stage. A model with a latent stage for infected CD4 T cells is also investigated and compared numerically with the original model. The model shows that strong stimulation of CTLs by CD4 T cells is necessary to prevent progression to the AIDS stage.  相似文献   

6.
In this paper, we investigate the dynamics of an intra-host model of malaria with logistic red blood growth, treatment and immune response. We provide a theoretical study of the model. We derive the basic reproduction number $\mathcal R_f$ which determines the extinction and the persistence of malaria within the body of a host. We compute equilibria and study their stability. More precisely, we show that there exists a threshold parameter $\zeta$ such that if $\mathcal R_f\leq\zeta\leq1$, the disease-free equilibrium is globally asymptotically stable. However, if $\mathcal R_f>1$, there exist two malaria infection equilibria which are locally asymptotically stable: one malaria infection equilibrium without immune response and one malaria infection equilibrium with immune response. The sensitivity analysis of the model has been performed in order to determine the impact of related parameters on outbreak severity. The theory is supported by numerical simulations. We also derive a spatio-temporal model, using Diffusion-Reaction equations to model parasites dispersal. Finally, we provide numerical simulations for parasites spreading, and test different treatment scenarios.  相似文献   

7.
In this paper we develop a first-order system of conservation laws for finite deformation in solids, describe its characteristic structure, and use this analysis to develop a second-order numerical method for problems involving finite deformation and plasticity. The equations of mass, momentum, and energy conservation in Lagrangian and Eulerian frames of reference are combined with kinetic equations of state for the stress and with caloric equations of state for the internal energy, as well as with auxiliary equations representing equality of mixed partial derivatives of the deformation gradient. Particular attention is paid to the influence of a curl constraint on the deformation gradient, so that the characteristic speeds transform properly between the two frames of reference. Next, we consider models in rate-form for isotropic elastic-plastic materials with work-hardening, and examine the circumstances under which these models lead to hyperbolic systems for the equations of motion. In spite of the fact that these models violate thermodynamic principles in such a way that the acoustic tensor becomes nonsymmetric, we still find that the characteristic speeds are always real for elastic behavior, and essentially always real for plastic response. These results allow us to construct a second-order Godunov method for the computation of three-dimensional displacement in a one-dimensional material viewed in the Lagrangian frame of reference. We also describe a technique for the approximate solution of Riemann problems in order to determine numerical fluxes in this algorithm. Finally, we present numerical examples of the results of the algorithm.  相似文献   

8.
In this paper, the stochastic HTLV-I infection model with CTL immune response is investigated. Firstly, we show that the stochastic system exists unique positive global solution originating from the positive initial value. Secondly, we obtain that the existence of ergodic stationary distribution of the model by stochastic Lyapunov functions. Thirdly, we establish sufficient conditions for extinction of the infected cells. Finally, numerical simulations are carried out to illustrate the theoretical results.  相似文献   

9.
The effectiveness of macroscopic dynamic freeway flow models at both uninterrupted and interrupted flow conditions is tested. Model implementation is made by finite difference methods developed here for solving the system's governing equations. These schemes are more effective than existing numerical methods, particularly when generation terms are introduced. The modelling alternatives and numerical solution algorithms are compared by employing a data base generated through microscopic simulation. Despite the effectiveness of the proposed numerical treatments, substantial deviations from the data at interrupted flows are still noticeable. In order to improve performance when flow is interrupted, we develop a modelling methodology that takes into account the ramp-freeway interactions so that all freeway components are treated as a system. We show that the coupling effects of the merging traffic streams are significant. Finally, the incremental benefits of using the more sophisticated high-order continuum models are assessed.  相似文献   

10.
Analysis of a viral infection model with delayed immune response   总被引:1,自引:0,他引:1  
It is well known that the immune response plays an important role in eliminating or controlling the disease after human body is infected by virus. In this paper, we investigate the dynamical behavior of a viral infection model with retarded immune response. The effect of time delay on stability of the equilibria of the system has been studied and sufficient condition for local asymptotic stability of the infected equilibrium and global asymptotic stability of the infection-free equilibrium and the immune-exhausted equilibrium are given. By numerical simulating,we observe that the stationary solution becomes unstable at some critical immune response time, while the delay time and birth rate of susceptible host cells increase, and we also discover the occurrence of stable periodic solutions and chaotic dynamical behavior. The results can be used to explain the complexity of the immune state of patients.  相似文献   

11.
In this paper, we propose an improved human T‐cell leukemia virus type 1 infection model with mitotic division of actively infected cells and delayed cytotoxic T lymphocyte immune response. By constructing suitable Lyapunov functional and using LaSalle invariance principle, we investigate the global stability of the infection‐free equilibrium of the system. Our results show that the time delay can change stability behavior of the infection equilibrium and lead to the existence of Hopf bifurcations. Finally, numerical simulations are conducted to illustrate the applications of the main results.  相似文献   

12.
In the paper we considered a model of immune reaction against malignant glioma. The model proposed by Kronik et al. (Cancer Immunol. Immunother., 2008) describes simplified interactions between tumour cells and five components of the immune system. We studied the effects of uncertainties of the parameters values to the system behaviour. We showed that the tumour growth rate is one of the most important parameters only in case of fast growing tumours, that is for GBM in our case.On the basis of the performed sensitivity analysis we proposed a reduced model in which the role of time delays in loops appearing in the described interactions is considered. The proposed model includes only two main components of the reaction, that is tumour cells and cytotoxic T-lymphocytes. It occurs that although the reduced system is described by several non-linear terms with three time delays, its dynamics is simple and time delays have hardly any influence on it.Both considered models confirmed that the non-linearities present in interactions between tumour cells and CTLs play a major role in the system dynamics, while other components or delays can be taken into account as supplementary elements only.  相似文献   

13.
Several models of tumor growth have been developed from various perspectives and for multiple scales. Due to the complexity of interactions, how the macroscopic dynamics formed by such interactions at the microscopic level is a difficult problem. In this paper, we focus on reconstructing a model from the output of an experimental model. This is carried out by the data analysis approach. We simulate the growth process of tumor with immune competition by using cellular automata technique adapted from previous studies. We employ an analysis of data given by the simulation output to derive an evolution equation of macroscopic dynamics of tumor growth. In a numerical example we show that the dynamics of tumor at stationary state can be described by an Ornstein–Uhlenbeck process. We show further how the result can be linked to the stochastic Gompertz model.  相似文献   

14.
Nanoparticle (NP)-based applications are becoming increasingly important in the biomedical field. However, understanding the interactions of NPs with biofluids and cells is a major issue in order to develop novel approaches aimed at boosting their internalization and, therefore, their translation into the clinic. To this end, we put forward a transport mathematical model to describe the spatio-temporal dynamics of iron oxide NPs and their interaction with cells under moderate centrifugation. Our numerical simulations allowed us to quantify the relevance of the flux density as one of the unavoidable key features driving NPs interaction with the media as well as for cell internalization processes. These findings will help to increase the efficiency of cell labelling for biomedical applications.  相似文献   

15.
This article reviews mathematical models which have investigated the importance of lytic and non-lytic immune responses for the control of viral infections. Lytic immune responses fight the virus by killing infected cells, while non-lytic immune responses fight the virus by inhibiting viral replication while leaving the infected cell alive. The models suggest which types or combinations of immune responses are required to resolve infections which vary in their characteristics, such as the rate of viral replication and the rate of virus-induced target cell death. This framework is then applied to persistent infections and viral evolution. It is investigated how viral evolution and antigenic escape can influence the relative balance of lytic and non-lytic responses over time, and how this might correlate with the transition from an asymptomatic infection to pathology. This is discussed in the specific context of hepatitis C virus infection.  相似文献   

16.
Survey data suggest that it is impossible for HIV infecteds to develop AIDs if the values of their CD4+ T-cell densities are above a critical threshold. An infected whose CD4+ T-cell density falls below 200 cells per microliter is now automatically regarded as having AIDS by the CDC. Using the CD4+ T-cell density as a surrogate marker of disease progression, a model that is consistent with the data is developed and applied to the homosexual/bisexual and IVDU risk groups. Assuming that the critical CD4+ T-cell density for these risk groups are identical, it is found that their progression towards AIDS during the incubation period is identical, suggesting that the dynamics of the HIV infection may be independent of risk group. The different incubation period distributions obtained from this modelling for these two risk groups is shown to be entirely due to their different normal seronegative CD4+ T-cell density distributions. Using IFN-γ as a surrogate marker is shown to give similar results.The impact of the HIV infection on the immune system is reviewed, and immunological infection models are developed. The data suggest to this author that Homo sapiens have generally lost the ability to generate T-cells and B-cells with the specificity necessary to neutralize HIV as they evolved from the primates. It is plausible that a legacy of primate immunity to HIV still remains in the 10% of Homo sapiens who show no immune system deterioration in the first 10 years of the HIV infection. New HIV infection treatment strategies based on this model are devised and discussed.  相似文献   

17.
Analysis and control of human immunodeficiency virus (HIV) infection have attracted the interests of mathematicians and control engineers during the recent years. Several mathematical models exist and adequately explain the interaction of the HIV infection and the immune system up to the stage of clinical latency, as well as viral suppression and immune system recovery after treatment therapy. However, none of these models can completely exhibit all that is observed clinically and account the full course of infection. Besides model inaccuracies that HIV models suffer from, some disturbances/uncertainties from different sources may arise in the modelling. In this paper we study the basic properties of a 6-dimensional HIV model that describes the interaction of HIV with two target cells, CD4+ T cells and macrophages. The disturbances are modelled in the HIV model as additive bounded disturbances. Highly Active AntiRetroviral Therapy (HAART) is used. The control input is defined to be dependent on the drug dose and drug efficiency. We developed treatment schedules for HIV infected patients by using robust multirate Model Predictive Control (MPC)-based method. The MPC is constructed on the basis of the approximate discrete-time model of the nominal model. We established a set of conditions, which guarantee that the multirate MPC practically stabilizes the exact discrete-time model with disturbances. The proposed method is applied to the stabilization of the uninfected steady state of the HIV model. The results of simulations show that, after initiation of HAART with a strong dosage, the viral load drops quickly and it can be kept under a suitable level with mild dosage of HAART. Moreover, the immune system is recovered with some fluctuations due to the presence of disturbances.  相似文献   

18.
This study discusses a mixture inventory model with back orders and lost sales in which the order quantity, reorder point, lead time and setup cost are decision variables. It is assumed that an arrival order lot may contain some defective items and the number of defective items is a random variable. There are two inventory models proposed in this paper, one with normally distributed demand and another with distribution free demand. Finally we develop two computational algorithms to obtain the optimal ordering policy. A computer code using the software Matlab is developed to derive the optimal solution and present numerical examples to illustrate the models. Additionally, sensitivity analysis is conducted with respect to the various system parameters.  相似文献   

19.
In order to embark on the development of numerical schemes for stiff problems, we have studied a model of relaxing heat flow. To isolate those errors unavoidably associated with discretization, a method of characteristics is developed, containing three free parameters depending on the stiffness ratio. It is shown that such “decoupled” schemes do not take into account the interaction between the wave families and hence result in incorrect wave speeds. We also demonstrate that schemes can differ by up to two orders of magnitude in their rms errors even while maintaining second-order accuracy. We show that no method of characteristics solution can be better than second-order accurate. Next, we develop “coupled” schemes which account for the interactions, and here we obtain two additional free parameters. We demonstrate how coupling of the two wave families can be introduced in simple ways and how the results are greatly enhanced by this coupling. Finally, numerical results for several decoupled and coupled schemes are presented, and we observe that dispersion relationships can be a very useful qualitative tool for analysis of numerical algorithms for dispersive waves. © 1993 John Wiley & Sons, Inc.  相似文献   

20.
A viral infection model with immune circadian rhythms is investigated in this paper. By employing the persistence theory, we establish a threshold between the extinction and the uniform persistence of the disease. These results can be used to explain the oscillation behaviors of virus population, which were observed in chronic HBV or HCV carriers. Further, numerical simulations indicate that the dynamics of the lytic component of cytotoxicity T cells (CTLs) is crucial to the outcome of a viral infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号