首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the current paper, a heat transfer model is suggested based on a time-fractional dual-phase-lag (DPL) model. We discuss the model in two parts, the direct problem and the inverse problem. Firstly, for solving it, the finite difference/Legendre spectral method is constructed. In the temporal direction, we employ the weighted and shifted Grünwald approximation, which can achieve second order convergence. In the spatial direction, the Legendre spectral method is used, it can obtain spectral accuracy. The stability and convergence are theoretically analyzed. For the inverse problem, the Bayesian method is used to construct an algorithm to estimate the four parameters for the model, namely, the time-fractional order α, the time-fractional order β, the delay time τT, and the relaxation time τq. Next, numerical experiments are provided to demonstrate the effectiveness of our scheme, with the values of τq and τT for processed meat employed. We also make a comparison with another method. The data obtained for the direct problem are used in the parameter estimation. The paper provides an accurate and efficient numerical method for the time-fractional DPL model.  相似文献   

2.
This paper presents an efficient numerical technique for solving a class of time-fractional diffusion equation. The time-fractional derivative is described in the Caputo form. The L1 scheme is used for discretization of Caputo fractional derivative and a collocation approach based on sextic B-spline basis function is employed for discretization of space variable. The unconditional stability of the fully-discrete scheme is analyzed. Two numerical examples are considered to demonstrate the accuracy and applicability of our scheme. The proposed scheme is shown to be sixth order accuracy with respect to space variable and (2 − α)-th order accuracy with respect to time variable, where α is the order of temporal fractional derivative. The numerical results obtained are compared with other existing numerical methods to justify the advantage of present method. The CPU time for the proposed scheme is provided.  相似文献   

3.
Smoothed penalty algorithms for optimization of nonlinear models   总被引:1,自引:0,他引:1  
We introduce an algorithm for solving nonlinear optimization problems with general equality and box constraints. The proposed algorithm is based on smoothing of the exact l 1-penalty function and solving the resulting problem by any box-constraint optimization method. We introduce a general algorithm and present theoretical results for updating the penalty and smoothing parameter. We apply the algorithm to optimization problems for nonlinear traffic network models and report on numerical results for a variety of network problems and different solvers for the subproblems.  相似文献   

4.
The Camassa–Holm (CH) system is a strong nonlinear third‐order evolution equation. So far, the numerical methods for solving this problem are only a few. This article deals with the finite difference solution to the CH equation. A three‐level linearized finite difference scheme is derived. The scheme is proved to be conservative, uniquely solvable, and conditionally second‐order convergent in both time and space in the discrete L norm. Several numerical examples are presented to demonstrate the accuracy and efficiency of the proposed method. © 2013 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 30: 451–471, 2014  相似文献   

5.
In this paper we present an efficient numerical algorithm for solving linear and nonlinear boundary value problems with two-point boundary conditions of tenth-order. The differential transform method is applied to construct the numerical solutions. The proposed algorithm avoids the complexity provided by other numerical approaches. Several illustrative examples are given to demonstrate the effectiveness of the present algorithm.   相似文献   

6.
In this paper, reference variable methods are proposed for solving nonlinear Minmax optimization problems with unconstraint or constraints for the first time, it uses reference decision vectors to improve the methods in Vincent and Goh (J Optim Theory Appl 75:501–519, 1992) such that its algorithm is convergent. In addition, a new method based on KKT conditions of min or max constrained optimization problems is also given for solving the constrained minmax optimization problems, it makes the constrained minmax optimization problems a problem of solving nonlinear equations by a complementarily function. For getting all minmax optimization solutions, the cost function f(x, y) can be constrained as M 1 < f(x, y) < M 2 by using different real numbers M 1 and M 2. To show effectiveness of the proposed methods, some examples are taken to compare with results in the literature, and it is easy to find that the proposed methods can get all minmax optimization solutions of minmax problems with constraints by using different M 1 and M 2, this implies that the proposed methods has superiority over the methods in the literature (that is based on different initial values to get other minmax optimization solutions).  相似文献   

7.
The main motive of this article is to study the recently developed Atangana-Baleanu Caputo (ABC) fractional operator that is obtained by replacing the classical singular kernel by Mittag-Leffler kernel in the definition of the fractional differential operator. We investigate a novel numerical method for the nonlinear two-dimensional cable equation in which time-fractional derivative is of Mittag-Leffler kernel type. First, we derive an approximation formula of the fractional-order ABC derivative of a function tk using a numerical integration scheme. Using this approximation formula and some properties of shifted Legendre polynomials, we derived the operational matrix of ABC derivative. In the author of knowledge, this operational matrix of ABC derivative is derived the first time. We have shown the efficiency of this newly derived operational matrix by taking one example. Then we solved a new class of fractional partial differential equations (FPDEs) by the implementation of this ABC operational matrix. The two-dimensional model of the time-fractional model of the cable equation is solved and investigated by this method. We have shown the effectiveness and validity of our proposed method by giving the solution of some numerical examples of the two-dimensional fractional cable equation. We compare our obtained numerical results with the analytical results, and we conclude that our proposed numerical method is feasible and the accuracy can be seen by error tables. We see that the accuracy is so good. This method will be very useful to investigate a different type of model that have Mittag-Leffler fractional derivative.  相似文献   

8.
This article is devoted to solving numerically the nonlinear generalized Benjamin–Bona–Mahony–Burgers (GBBMB) equation that has several applications in physics and applied sciences. First, the time derivative is approximated by using a finite difference formula. Afterward, the stability and convergence analyses of the obtained time semi‐discrete are proven by applying the energy method. Also, it has been demonstrated that the convergence order in the temporal direction is O(dt) . Second, a fully discrete formula is acquired by approximating the spatial derivatives via Legendre spectral element method. This method uses Lagrange polynomial based on Gauss–Legendre–Lobatto points. An error estimation is also given in detail for full discretization scheme. Ultimately, the GBBMB equation in the one‐ and two‐dimension is solved by using the proposed method. Also, the calculated solutions are compared with theoretical solutions and results obtained from other techniques in the literature. The accuracy and efficiency of the mentioned procedure are revealed by numerical samples.  相似文献   

9.
To recover the full accuracy of discretized fractional derivatives, nonuniform mesh technique is a natural and simple approach to efficiently resolve the initial singularities that always appear in the solutions of time-fractional linear and nonlinear differential equations. We first construct a nonuniform L2 approximation for the fractional Caputo's derivative of order 1 < α < 2 and present a global consistency analysis under some reasonable regularity assumptions. The temporal nonuniform L2 formula is then utilized to develop a linearized difference scheme for a time-fractional Benjamin–Bona–Mahony-type equation. The unconditional convergence of our scheme on both uniform and nonuniform (graded) time meshes are proven with respect to the discrete H1-norm. Numerical examples are provided to justify the accuracy.  相似文献   

10.
This paper is concerned with numerical solutions of time-fractional parabolic equations. Due to the Caputo time derivative being involved, the solutions of equations are usually singular near the initial time $t = 0$ even for a smooth setting. Based on a simple change of variable $s = t^β$, an equivalent $s$-fractional differential equation is derived and analyzed. Two types of finite difference methods based on linear and quadratic approximations in the $s$-direction are presented, respectively, for solving the $s$-fractional differential equation. We show that the method based on the linear approximation provides the optimal accuracy$\mathcal{O}(N ^{−(2−α)})$ where $N$ is the number of grid points in temporal direction. Numerical examples for both linear and nonlinear fractional equations are presented in comparison with $L1$ methods on uniform meshes and graded meshes, respectively. Our numerical results show clearly the accuracy and efficiency of the proposed methods.  相似文献   

11.
In this paper, we present an extension to the NE/SQP method; the latter is a robust algorithm that we proposed for solving the nonlinear complementarity problem in an earlier article. In this extended version of NE/SQP, instead of exactly solving the quadratic program subproblems, approximate solutions are generated via an inexact rule.Under a proper choice for this rule, this inexact method is shown to inherit the same convergence properties of the original NE/SQP method. In addition to developing the convergence theory for the inexact method, we also present numerical results of the algorithm tested on two problems of varying size.  相似文献   

12.
In this article, we investigate interior penalty discontinuous Galerkin (IPDG) methods for solving a class of two‐dimensional nonlinear parabolic equations. For semi‐discrete IPDG schemes on a quasi‐uniform family of meshes, we obtain a priori bounds on solutions measured in the L2 norm and in the broken Sobolev norm. The fully discrete IPDG schemes considered are based on the approximation by forward Euler difference in time and broken Sobolev space. Under a restriction related to the mesh size and time step, an hp ‐version of an a priori l(L2) and l2(H1) error estimate is derived and numerical experiments are presented.© 2010 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 28: 288–311, 2012  相似文献   

13.
In this work, an effective and fast finite element numerical method with high-order accuracy is discussed for solving a nonlinear time fractional diffusion equation. A two-level linearized finite element scheme is constructed and a temporal–spatial error splitting argument is established to split the error into two parts, that is, the temporal error and the spatial error. Based on the regularity of the time discrete system, the temporal error estimate is derived. Using the property of the Ritz projection operator, the spatial error is deduced. Unconditional superclose result in H1-norm is obtained, with no additional regularity assumption about the exact solution of the problem considered. Then the global superconvergence error estimate is obtained through the interpolated postprocessing technique. In order to reduce storage and computation time, a fast finite element method evaluation scheme for solving the nonlinear time fractional diffusion equation is developed. To confirm the theoretical error analysis, some numerical results are provided.  相似文献   

14.
We prove existence and numerical stability of numerical solutions of three fully discrete interior penalty discontinuous Galerkin methods for solving nonlinear parabolic equations. Under some appropriate regularity conditions, we give the l2(H1) and l(L2) error estimates of the fully discrete symmetric interior penalty discontinuous Galerkin–scheme with the implicit θ ‐schemes in time, which include backward Euler and Crank–Nicolson finite difference approximations. Our estimates are optimal with respect to the mesh size h. The theoretical results are confirmed by some numerical experiments. © 2012 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2013  相似文献   

15.
This paper deals with the problem of fault estimation for a class of switched nonlinear systems of neutral type. The nonlinearities are assumed to satisfy global Lipschitz conditions and appear in both the state and measured output equations. By employing a switched observer-based fault estimator, the problem is formulated as an H filtering problem. Sufficient delay-dependent existence conditions of the H fault estimator (H-FE) are given in terms of certain matrix inequalities based on the average dwell time approach. In addition, by using cone complementarity algorithm, the solutions to the observer gain matrices are obtained by solving a set of linear matrix inequalities (LMIs). A numerical example is provided to demonstrate the effectiveness of the proposed approach.  相似文献   

16.
In this article, a novel numerical method is proposed for nonlinear partial differential equations with space- and time-fractional derivatives. This method is based on the two-dimensional differential transform method (DTM) and generalized Taylor's formula. The fractional derivatives are considered in the Caputo sense. Several illustrative examples are given to demonstrate the effectiveness of the present method. Results obtained using the scheme presented here agree well with the analytical solutions and the numerical results presented elsewhere. Results also show that the numerical scheme is very effective and convenient for solving nonlinear partial differential equations of fractional order.  相似文献   

17.
In this article, a spatial two-grid finite element (TGFE) algorithm is used to solve a two-dimensional nonlinear space–time fractional diffusion model and improve the computational efficiency. First, the second-order backward difference scheme is used to formulate the time approximation, where the time-fractional derivative is approximated by the weighted and shifted Grünwald difference operator. In order to reduce the computation time of the standard FE method, a TGFE algorithm is developed. The specific algorithm is to iteratively solve a nonlinear system on the coarse grid and then to solve a linear system on the fine grid. We prove the scheme stability of the TGFE algorithm and derive a priori error estimate with the convergence result Ot2 + hr + 1 − η + H2r + 2 − 2η) . Finally, through a two-dimensional numerical calculation, we improve the computational efficiency and reduce the computation time by the TGFE algorithm.  相似文献   

18.
In this article, an efficient numerical method for linearized and nonlinear generalized time-fractional KdV-type equations is proposed by combining the finite difference scheme and Petrov–Galerkin spectral method. The scale and weight functions involved in generalized fractional derivative cause too much difficulty in discretization and numerical analysis. Fortunately, motivated by finite difference method for fractional differential equation on graded mesh, the stability and convergence of the constructed method are established rigorously. It is proved that the full discretization schemes of generalized time-fractional KdV-type equation is unconditionally stable in linear case. While for nonlinear case, it is stable under a CFL condition and for not small ϵ, coefficient of the high-order spatial differential term. In addition, the full discretization schemes with respect to linear and nonlinear cases respectively converge to the associated exact solutions with orders and , where τ, α, N and m accordingly indicate the time step size, the order of the fractional derivative, polynomial degree, and regularity of the exact solution. Numerical experiments are carried out to support the theoretical results.  相似文献   

19.
In this article, a new compact alternating direction implicit finite difference scheme is derived for solving a class of 3‐D nonlinear evolution equations. By the discrete energy method, it is shown that the new difference scheme has good stability and can attain second‐order accuracy in time and fourth‐order accuracy in space with respect to the discrete H1 ‐norm. A Richardson extrapolation algorithm is applied to achieve fourth‐order accuracy in temporal dimension. Numerical experiments illustrate the accuracy and efficiency of the extrapolation algorithm. © 2012 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2013  相似文献   

20.
In this paper, we introduce numerical schemes and their analysis based on weak Galerkin finite element framework for solving 2‐D reaction–diffusion systems. Weak Galerkin finite element method (WGFEM) for partial differential equations relies on the concept of weak functions and weak gradients, in which differential operators are approximated by weak forms through the Green's theorem. This method allows the use of totally discontinuous functions in the approximation space. In the current work, the WGFEM solves reaction–diffusion systems to find unknown concentrations (u, v) in element interiors and boundaries in the weak Galerkin finite element space WG(P0, P0, RT0) . The WGFEM is used to approximate the spatial variables and the time discretization is made by the backward Euler method. For reaction–diffusion systems, stability analysis and error bounds for semi‐discrete and fully discrete schemes are proved. Accuracy and efficiency of the proposed method successfully tested on several numerical examples and obtained results satisfy the well‐known result that for small values of diffusion coefficient, the steady state solution converges to equilibrium point. Acquired numerical results asserted the efficiency of the proposed scheme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号