首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In this paper we study the time differential dual-phase-lag model of heat conduction incorporating the microstructural interaction effect in the fast-transient process of heat transport. We analyze the influence of the delay times upon some qualitative properties of the solutions of the initial boundary value problems associated to such a model. Thus, the uniqueness results are established under the assumption that the conductivity tensor is positive definite and the delay times τq and τT vary in the set {0 ≤ τq ≤ 2τT} ∪ {0 < 2τT < τq}. For the continuous dependence problem we establish two different estimates. The first one is obtained for the delay times with 0 ≤ τq ≤ 2τT, which agrees with the thermodynamic restrictions on the model in concern, and the solutions are stable. The second estimate is established for the delay times with 0 < 2τT < τq and it allows the solutions to have an exponential growth in time. The spatial behavior of the transient solutions and the steady-state vibrations is also addressed. For the transient solutions we establish a theorem of influence domain, under the assumption that the delay times are in {0 < τq ≤ 2τT} ∪ {0 < 2τT < τq}. While for the amplitude of the harmonic vibrations we obtain an exponential decay estimate of Saint–Venant type, provided the frequency of vibration is lower than a critical value and without any restrictions upon the delay times.  相似文献   

2.
A one‐dimensional integrable lattice system of ODEs for complex functions Qn(τ) that exhibits dispersive phenomena in the phase is studied. We consider wave solutions of the local form Qn(τ) ∼ qexp(i(kn + ωτ + c)), in which q, k, and ω modulate on long time and long space scales t = ετ and x = εn. Such solutions arise from initial data of the form Qn(0) = q(nε) exp(iϕ(nε)/ε), the phase derivative ϕ′ 0 giving the local value of the phase difference k. Formal asymptotic analysis as ε → 0 yields a first‐order system of PDEs for q and ϕ′ as functions of x and t. A certain finite subchain of the discrete system is solvable by an inverse spectral transform. We propose formulae for the asymptotic spectral data and use them to study the limiting behavior of the solution in the case of initial data |Qn| < 1, which yield hyperbolic PDEs in the formal limit. We show that the hyperbolic case is amenable to Lax‐Levermore theory. The associated maximization problem in the spectral domain is solved by means of a scalar Riemann‐Hilbert problem for a special class of data for all times before breaking of the formal PDEs. Under certain assumptions on asymptotic behaviors, the phase and amplitude modulation of the discrete systems is shown to be governed by the formal PDEs. Modulation equations after breaking time are not studied. Full details of the WKB theory and numerical results are left to a future exposition. © 2000 John Wiley & Sons, Inc.  相似文献   

3.
The dual-phase-lag heat transfer model is applied to investigate the transient heat conduction in an infinitely long solid cylinder for an exponentially decaying pulse boundary heat flux and for a short-pulse boundary heat flux. A hybrid application of the Laplace transform method and the control volume scheme is used to obtain the numerical solutions. Comparison between the numerical results and the analytic solution for an exponentially decaying heat flux pulse evidences the accuracy of the present numerical results. Results further show that the present numerical scheme can overcome the mathematical difficulties to analyze such problems. Effects of the thermal lag ratio τq/τT, the shift time τqτT, the function form of heating pulse, and geometry of medium on the behavior of heat transfer are investigated.  相似文献   

4.
In this paper, a finite difference scheme is proposed for solving the nonlinear time-fractional integro-differential equation. This model involves two nonlocal terms in time, ie, a Caputo time-fractional derivative and an integral term with memory. The existence of numerical solutions is shown by the Leray-Schauder theorem. And we obtain the discrete L2 stability and convergence with second order in time and space by the discrete energy method. Then the uniqueness of numerical solutions is derived. Moreover, an iterative algorithm is designed for solving the derived nonlinear system. Numerical examples are presented to validate the theoretical findings and the efficiency of the proposed algorithm.  相似文献   

5.
In the present work, we consider the inverse problem for the impulsive Sturm–Liouville equations with eigenparameter-dependent boundary conditions on the whole interval (0,π) from interior spectral data. We prove two uniqueness theorems on the potential q(x) and boundary conditions for the interior inverse problem, and using the Weyl function technique, we show that if coefficients of the first boundary condition, that is, h1,h2, are known, then the potential function q(x) and coefficients of the second boundary condition, that is, H1,H2, are uniquely determined by information about the eigenfunctions at the midpoint of the interval and one spectrum or partial information on the eigenfunctions at some internal points and some of two spectra.  相似文献   

6.
Recently Caputo and Fabrizio introduced a new derivative with fractional order without singular kernel. The derivative can be used to describe the material heterogeneities and the fluctuations of different scales. In this article, we derived a new discretization of Caputo–Fabrizio derivative of order α (1 < α < 2) and applied it into the Cattaneo equation. A fully discrete scheme based on finite difference method in time and Legendre spectral approximation in space is proposed. The stability and convergence of the fully discrete scheme are rigorously established. The convergence rate of the fully discrete scheme in H1 norm is O(τ2 + N1?m), where τ, N and m are the time‐step size, polynomial degree and regularity in the space variable of the exact solution, respectively. Furthermore, the accuracy and applicability of the scheme are confirmed by numerical examples to support the theoretical results.  相似文献   

7.
In this article, we consider the finite element methods (FEM) for Grwünwald–Letnikov time-fractional diffusion equation, which is obtained from the standard two-dimensional diffusion equation by replacing the first-order time derivative with a fractional derivative (of order α, with 0?h r+1?+?τ2-α), where h, τ and r are the space step size, time step size and polynomial degree, respectively. A numerical example is presented to verify the order of convergence.  相似文献   

8.
This article is devoted to solving numerically the nonlinear generalized Benjamin–Bona–Mahony–Burgers (GBBMB) equation that has several applications in physics and applied sciences. First, the time derivative is approximated by using a finite difference formula. Afterward, the stability and convergence analyses of the obtained time semi‐discrete are proven by applying the energy method. Also, it has been demonstrated that the convergence order in the temporal direction is O(dt) . Second, a fully discrete formula is acquired by approximating the spatial derivatives via Legendre spectral element method. This method uses Lagrange polynomial based on Gauss–Legendre–Lobatto points. An error estimation is also given in detail for full discretization scheme. Ultimately, the GBBMB equation in the one‐ and two‐dimension is solved by using the proposed method. Also, the calculated solutions are compared with theoretical solutions and results obtained from other techniques in the literature. The accuracy and efficiency of the mentioned procedure are revealed by numerical samples.  相似文献   

9.
The Legendre spectral and pseudospectral approximations are proposed for the standard Zakharov equations with initial boundary conditions. Optimal H1 error estimate of the method is given for both semidiscrete and fully discrete schemes. The uniform convergence for the parameter ε relative to the acoustic speed is proved. Moreover, the multidomain Legendre spectral scheme is also constructed, which can be implemented in parallel. Finally, numerical results in single domain and multidomain verify the high accuracy of the Legendre spectral method. © 2012 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2013  相似文献   

10.
In this article, an efficient numerical method for linearized and nonlinear generalized time-fractional KdV-type equations is proposed by combining the finite difference scheme and Petrov–Galerkin spectral method. The scale and weight functions involved in generalized fractional derivative cause too much difficulty in discretization and numerical analysis. Fortunately, motivated by finite difference method for fractional differential equation on graded mesh, the stability and convergence of the constructed method are established rigorously. It is proved that the full discretization schemes of generalized time-fractional KdV-type equation is unconditionally stable in linear case. While for nonlinear case, it is stable under a CFL condition and for not small ϵ, coefficient of the high-order spatial differential term. In addition, the full discretization schemes with respect to linear and nonlinear cases respectively converge to the associated exact solutions with orders and , where τ, α, N and m accordingly indicate the time step size, the order of the fractional derivative, polynomial degree, and regularity of the exact solution. Numerical experiments are carried out to support the theoretical results.  相似文献   

11.
In this paper, a Legendre wavelet collocation method for solving a class of time-fractional order telegraph equation defined by Caputo sense is discussed. Fractional integral formula of a single Legendre wavelet in the Riemann–Liouville sense is derived by means of shifted Legendre polynomials. The main characteristic behind this approach is that it reduces equations to those of solving a system of algebraic equations which greatly simplifies the problem. The convergence analysis and error analysis of the proposed method are investigated. Several examples are presented to show the applicability and accuracy of the proposed method.  相似文献   

12.
The inverse Sturm‐Liouville problem on a half‐line is considered. With the aid of a Fourier‐Legendre series representation of the transmutation integral kernel and the Gel'fand‐Levitan equation, the numerical solution of the problem is reduced to a system of linear algebraic equations. The potential q is recovered from the first coefficient of the Fourier‐Legendre series. The resulting numerical method is direct and simple. The results of the numerical experiments are presented.  相似文献   

13.
Denote by Tn,q the set of trees with n vertices and matching number q. Guo [On the Laplacian spectral radius of a tree, Linear Algebra Appl. 368 (2003) 379-385] gave the tree in Tn,q with the greatest value of the largest Laplacian eigenvalue. In this paper, we give another proof of this result. Using our method, we can go further beyond Guo by giving the tree in Tn,q with the second largest value of the largest Laplacian eigenvalue.  相似文献   

14.
In this paper we describe a method for constructing approximate solutions of a two-dimensional inverse eigenvalue problem. Here we consider the problem of recovering a functionq(x, y) from the eigenvalues of — +q(x, y) on a rectangle with Dirichlet boundary conditions. The potentialq(x, y) is assumed to be symmetric with respect to the midlines of the rectangle. Our method is a generalization of an algorithm Hald presented for the construction of symmetric potentials in the one-dimensional inverse Sturm-Liouville problem. Using a projection method, the inverse spectral problem is reduced to an inverse eigenvalue problem for a matrix. We show that if the given eigenvalues are small perturbations of simple eigenvalues ofq=0, then the matrix problem has a solution. This solution is used to construct a functionq which has the same lowest eigenvalues as the unknownq, and several numerical examples are given to illustrate the methods.  相似文献   

15.
We investigate some classes of eigenvalue dependent boundary value problems of the form where A ? A+ is a symmetric operator or relation in a Krein space K, τ is a matrix function and Γ0, Γ1 are abstract boundary mappings. It is assumed that A admits a self‐adjoint extension in K which locally has the same spectral properties as a definitizable relation, and that τ is a matrix function which locally can be represented with the resolvent of a self‐adjoint definitizable relation. The strict part of τ is realized as the Weyl function of a symmetric operator T in a Krein space H, a self‐adjoint extension à of A × T in K × H with the property that the compressed resolvent PK (Ãλ)–1|K k yields the unique solution of the boundary value problem is constructed, and the local spectral properties of this so‐called linearization à are studied. The general results are applied to indefinite Sturm–Liouville operators with eigenvalue dependent boundary conditions (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
The degree of freedom of a closed mechanism is the dimension of a subset M of R n , M being the inverse image of the unity by the closure function f : (q 1, ..., q n ) f(q 1, ..., q n ), where q 1, ..., q n are the articular coordinates. We first study the regular points for the mapping f from R n into the Lie group of displacements and, second, study the singularities of the mapping f. The classical theory of mechanisms considers, often implicitly, that f is a subimmersion. Here, the calculations are made in a larger case, up to second order, and the results are then slightly different. The case of such classical mechanisms as Bennett, Bricard, and Goldberg mechanisms, justify the considerations of this more general framework and the example of a Bricard mechanism is chosen as an application of the method.  相似文献   

17.
The Chebyshev‐Legendre spectral method for the two‐dimensional vorticity equations is considered. The Legendre Galerkin Chebyshev collocation method is used with the Chebyshev‐Gauss collocation points. The numerical analysis results under the L2‐norm for the Chebyshev‐Legendre method of one‐dimensional case are generalized into that of the two‐dimensional case. The stability and optimal order convergence of the method are proved. Numerical results are given. © 2008 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2009  相似文献   

18.
We extend a result of ?estakov to compare the complex interpolation method [X 0, X 1]θ with Calderón-Lozanovskii’s construction ${{{{X^{1-\theta}_{0}X^{\theta}_{1}}}}}We extend a result of Šestakov to compare the complex interpolation method [X 0, X 1]θ with Calderón-Lozanovskii’s construction X1-q0Xq1{{{{X^{1-\theta}_{0}X^{\theta}_{1}}}}}, in the context of abstract Banach lattices. This allows us to prove that an operator between Banach lattices T : EF which is p-convex and q-concave, factors, for any q ? (0, 1){{{{\theta \in (0, 1)}}}}, as TT 2 T 1, where T 2 is ( (\fracpq+ (1 - q)p ){{\left({\frac{p}{{\theta + (1 - \theta)p}}} \right)}}-convex and T 1 is (\fracq1 - q ){{\left({\frac{q}{{1 - \theta }}} \right)}}-concave.  相似文献   

19.
Two inverse problems for the Sturm-Liouville operator Ly = s-y″ + q(x)y on the interval [0, fy] are studied. For θ ⩾ 0, there is a mapping F:W 2θl B θ, F(σ) = {s k }1, related to the first of these problems, where W 2 = W 2[0, π] is the Sobolev space, σ = ∫ q is a primitive of the potential q, and l B θ is a specially constructed finite-dimensional extension of the weighted space l 2θ, where we place the regularized spectral data s = {s k }1 in the problem of reconstruction from two spectra. The main result is uniform lower and upper bounds for ∥σ - σ1θ via the l B θ-norm ∥s − s1θ of the difference of regularized spectral data. A similar result is obtained for the second inverse problem, that is, the problem of reconstructing the potential from the spectral function of the operator L generated by the Dirichlet boundary conditions. The result is new even for the classical case qL 2, which corresponds to θ = 1.  相似文献   

20.
We study spectral approximations of Schrödinger operators T = ?Δ+Q with complex potentials on Ω = ?d, or exterior domains Ω??d, by domain truncation. Our weak assumptions cover wide classes of potentials Q for which T has discrete spectrum, of approximating domains Ωn, and of boundary conditions on ?Ωn such as mixed Dirichlet/Robin type. In particular, Re Q need not be bounded from below and Q may be singular. We prove generalized norm resolvent convergence and spectral exactness, i.e. approximation of all eigenvalues of T by those of the truncated operators Tn without spectral pollution. Moreover, we estimate the eigenvalue convergence rate and prove convergence of pseudospectra. Numerical computations for several examples, such as complex harmonic and cubic oscillators for d = 1,2,3, illustrate our results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号