首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
赵卫东 《计算数学》2015,37(4):337-373
1990年,Pardoux和Peng(彭实戈)解决了非线性倒向随机微分方程(backward stochastic differential equation,BSDE)解的存在唯一性问题,从而建立了正倒向随机微分方程组(forward backward stochastic differential equations,FBSDEs)的理论基础;之后,正倒向随机微分方程组得到了广泛研究,并被应用于众多研究领域中,如随机最优控制、偏微分方程、金融数学、风险度量、非线性期望等.近年来,正倒向随机微分方程组的数值求解研究获得了越来越多的关注,本文旨在基于正倒向随机微分方程组的特性,介绍正倒向随机微分方程组的主要数值求解方法.我们将重点介绍讨论求解FBSDEs的积分离散法和微分近似法,包括一步法和多步法,以及相应的数值分析和理论分析结果.微分近似法能构造出求解全耦合FBSDEs的高效高精度并行数值方法,并且该方法采用最简单的Euler方法求解正向随机微分方程,极大地简化了问题求解的复杂度.文章最后,我们尝试提出关于FBSDEs数值求解研究面临的一些亟待解决和具有挑战性的问题.  相似文献   

3.
The transient simulation of noise in electronic circuits leads to differential-algebraic equations, additively disturbed by white noise. For these systems, we present a mathematical model based on the theory of stochastic differential equations, along with an implicit two-step method for their numerical treatment. This numerical scheme works directly on the given structure of the equations which makes very efficient implementations possible. The order of convergence is preserved. The theoretical results are verified by numerical noise simulations of benchmark circuits.  相似文献   

4.
Stochastic differential algebraic equations (SDAEs) arise as a mathematical model for electrical network equations that are influenced by additional sources of Gaussian white noise. We discuss adaptive linear multi-step methods for their numerical integration, in particular stochastic analogues of the trapezoidal rule and the two-step backward differentiation formula, and we obtain conditions that ensure mean-square convergence of this methods. For the case of small noise we present a strategy for controlling the step-size in the numerical integration. It is based on estimating the mean-square local errors and leads to step-size sequences that are identical for all computed paths. Test results illustrate the performance of the presented methods. (© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
Many numerical aspects are involved in parameter estimation of stochastic volatility models. We investigate a model for stochastic volatility suggested by Hobson and Rogers [Complete models with stochastic volatility, Mathematical Finance 8 (1998) 27] and we focus on its calibration performance with respect to numerical methodology.In recent financial literature there are many papers dealing with stochastic volatility models and their capability in capturing European option prices; in Figà-Talamanca and Guerra [Towards a coherent volatility pricing model: An empirical comparison, Financial Modelling, Phisyca-Verlag, 2000] a comparison between some of the most significant models is done. The model proposed by Hobson and Rogers seems to describe quite well the dynamics of volatility.In Figà-Talamanca and Guerra [Fitting the smile by a complete model, submitted] a deep investigation of the Hobson and Rogers model was put forward, introducing different ways of parameters' estimation. In this paper we test the robustness of the numerical procedures involved in calibration: the quadrature formula to compute the integral in the definition of some state variables, called offsets, that represent the weight of the historical log-returns, the discretization schemes adopted to solve the stochastic differential equation for volatility and the number of simulations in the Monte Carlo procedure introduced to obtain the option price.The main results can be summarized as follows. The choice of a high order of convergence scheme is not fully justified because the option prices computed via calibration method are not sensitive to the use of a scheme with 2.0 order of convergence or greater. The refining of the approximation rule for the integral, on the contrary, allows to compute option prices that are often closer to market prices. In conclusion, a number of 10 000 simulations seems to be sufficient to compute the option price and a higher number can only slow down the numerical procedure.  相似文献   

6.
We present the ability of numerical simulations to reproduce the mean-square exponential dichotomy of stochastic differential equations. Under some conditions, we show that the mean-square exponential dichotomy of stochastic differential equations is equivalent to that of the numerical method for sufficient small step sizes  相似文献   

7.
We consider a stochastic growth model for which extinction eventually occurs almost surely. The associated complete Fokker–Planck equation describing the law of the process is established and studied. This equation combines a PDE and an ODE, connected one to each other. We then design a finite differences numerical scheme under a probabilistic viewpoint. The model and its approximation are evaluated through numerical simulations.  相似文献   

8.
We start from a realistic half space model for thermal imaging, which we then use to develop a mathematical asymptotic analysis well suited for the design of reconstruction algorithms. We seek to reconstruct thermal anomalies only through their rough features. With this way our proposed algorithms are stable against measurement noise and geometry perturbations. Based on rigorous asymptotic estimates, we first obtain an approximation for the temperature profile which we then use to design nonit-erative detection algorithms. We show on numerical simulations evidence that they are accurate and robust. Moreover, we provide a mathematical model for ultrasonic temperature imaging, which is an important technique in cancerous tissue ablation therapy.AMS subject classifications: 35R20, 35B30  相似文献   

9.
Focusing on stochastic dynamics involve continuous states as well as discrete events, this article investigates stochastic logistic model with regime switching modulated by a singular Markov chain involving a small parameter. This Markov chain undergoes weak and strong interactions, where the small parameter is used to reflect rapid rate of regime switching among each state class. Two-time-scale formulation is used to reduce the complexity. We obtain weak convergence of the underlying system so that the limit has much simpler structure. Then we utilize the structure of limit system as a bridge, to invest stochastic permanence of original system driving by a singular Markov chain with a large number of states. Sufficient conditions for stochastic permanence are obtained. A couple of examples and numerical simulations are given to illustrate our results.  相似文献   

10.
In this paper we study a stochastic epidemic model of vector-borne diseases with direct mode of transmission and its delay modification. More precisely, we extend the deterministic epidemic models by introducing random perturbations around the endemic equilibrium state. By using suitable Lyapunov functions and functionals, we obtain stability conditions for the considered models and study the effect of the delay on the stability of the endemic equilibrium. Finally, numerical simulations for the stochastic model of malaria disease transmission are presented to illustrate our mathematical findings.  相似文献   

11.
We consider the finite element approximation of a time dependent generalized bioconvective flow. The underlying system of partial differential equations consists of incompressible Navier–Stokes type convection equations coupled with an equation describing the transport of micro-organisms. The viscosity of the fluid is assumed to be a function of the concentration of the micro-organisms. We show the existence and uniqueness of the weak solution of the system in two dimensions and construct numerical approximations based on the finite element method, for which we obtain error estimates. In addition, we conduct several numerical experiments to demonstrate the accuracy of the numerical method and perform simulations of the bioconvection pattern formations based on realistic model parameters to demonstrate the validity of the proposed numerical algorithm.  相似文献   

12.
In this paper, we consider the pricing of vulnerable options when the underlying asset follows a stochastic volatility model. We use multiscale asymptotic analysis to derive an analytic approximation formula for the price of the vulnerable options and study the stochastic volatility effect on the option price. A numerical experiment result is presented to demonstrate our findings graphically.  相似文献   

13.
We propose an optimization approach to weak approximation of stochastic differential equations with jumps. A mathematical programming technique is employed to obtain numerically upper and lower bound estimates of the expectation of interest, where the optimization procedure ends up with a polynomial programming. A major advantage of our approach is that we do not need to simulate sample paths of jump processes, for which few practical simulation techniques exist. We provide numerical results of moment estimations for Doléans-Dade stochastic exponential, truncated stable Lévy processes and Ornstein-Uhlenbeck-type processes to illustrate that our method is able to capture very well the distributional characteristics of stochastic differential equations with jumps.  相似文献   

14.
We consider a linear stochastic differential equation with stochastic drift. We study the problem of approximating the solution of such equation through an Ornstein–Uhlenbeck type process, by using direct methods of calculus of variations. We show that general power cost functionals satisfy the conditions for existence and uniqueness of the approximation. We provide some examples of general interest and we give bounds on the goodness of the corresponding approximations. Finally, we focus on a model of a neuron embedded in a simple network and we study the approximation of its activity, by exploiting the aforementioned results.  相似文献   

15.
We present a numerical algorithm for pricing derivatives on electricity prices. The algorithm is based on approximating the generator of the underlying price process on a lattice of prices, resulting in an approximation of the stochastic process by a continuous time Markov chain. We numerically study the rate of convergence of the algorithm for the case of the Merton jump-diffusion model and apply the algorithm to calculate prices and sensitivities of both European and Bermudan electricity derivatives when the underlying price follows a stochastic process which exhibits both fast mean-reversion and jumps of large magnitude.  相似文献   

16.
In this paper we introduce a simulation algorithm based on fluid dynamic models to reproduce the behavior of traffic in a portion of the urban network in Rome. Numerical results, obtained comparing experimental data with numerical solutions, show the effectiveness of our approximation.  相似文献   

17.
Johan Hake  Glenn Terje Lines 《PAMM》2007,7(1):2120015-2120016
Ca2+ signaling in the dyadic cleft in ventricular myocytes is fundamentally discrete and stochastic. In this paper we study the stochastic binding of single Ca2+ ions to receptors in the cleft using two different models of diffusion; a stochastic and discrete Random walk (RW) model, and a deterministic continuous model. We investigate if the latter model, together with a stochastic receptor model, can reproduce binding events registered in fully stochastic RW simulations. By evaluating the continuous model goodness-of-fit, we present evidences that it can. The large fluctuations in binding rate observed at the time level of single time steps are integrated and smoothed at the larger time scale of binding events, explaining the continuous model goodness-of-fit. With this we demonstrate that the stochasticity and discreteness of the Ca2+ signaling in the dyadic cleft, determined by single binding events, can be described with a deterministic model of Ca2+ diffusion together with a stochastic model of the binding events. Time consuming RW simulations can thus be avoided. We also present a new analytical model of bi-molecular binding probabilities that is used in the RW simulations, and in the statistical analysis. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
This paper aims to investigate the numerical approximation of a general second order parabolic stochastic partial differential equation(SPDE) driven by multiplicative and additive noise. Our main interest is on such SPDEs where the nonlinear part is stronger than the linear part, usually called stochastic dominated transport equations. Most standard numerical schemes lose their good stability properties on such equations, including the current linear implicit Euler method. We discretize the SPDE in space by the finite element method and propose a novel scheme called stochastic Rosenbrock-type scheme for temporal discretization. Our scheme is based on the local linearization of the semi-discrete problem obtained after space discretization and is more appropriate for such equations. We provide a strong convergence of the new fully discrete scheme toward the exact solution for multiplicative and additive noise and obtain optimal rates of convergence. Numerical experiments to sustain our theoretical results are provided.  相似文献   

19.
In this paper we analyze, from the numerical point of view, a dynamic thermoelastic problem. Here, the so-called exact heat conduction model with a delay term is used to obtain the heat evolution. Thus, the thermomechanical problem is written as a coupled system of partial differential equations, and its variational formulation leads to a system written in terms of the velocity and the temperature fields. An existence and uniqueness result is recalled. Then, fully discrete approximations are introduced by using the classical finite element method to approximate the spatial variable and the implicit Euler scheme to discretize the time derivatives. A priori error estimates are proved, from which the linear convergence of the algorithm could be derived under suitable additional regularity conditions. Finally, a two-dimensional numerical example is solved to show the accuracy of the approximation and the decay of the discrete energy.  相似文献   

20.
《Quaestiones Mathematicae》2013,36(5):605-621
Abstract

We investigate a stochastic HIV/AIDS epidemic model with treatment. The model allows for two stages of infection namely the asymptomatic phase and the symptomatic phase. We prove existence of global positive solutions. We show that the solutions are stochastically ultimately bounded and stochastically permanent. We also study asymptotic behaviour of the solution to the stochastic model around the disease-free equilibrium of the underlying deterministic model. Our theoretical results are illustrated by way of numerical simulations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号