首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 493 毫秒
1.
为提高太阳能转化效率, 高效响应可见光的光催化剂的研究十分必要. 本研究以硫化镉、氯化钯、醋酸镍和硫脲为原料, 利用水热法制备了NiS-PdS/CdS复合光催化剂. 通过X射线衍射(XRD)、紫外-可见光漫反射光谱(DRS)、透射电子显微镜(TEM)和光致发光(PL)光谱等手段对光催化剂进行了表征, 并在乳酸牺牲剂中对光解水制氢活性进行了测试. 结果表明: 助催化剂NiS 和PdS 能较好地分布在CdS 表面上, 形成共负载的NiS-PdS/CdS 光催化剂, 其可见光下的活性比CdS明显增强, 当NiS 和PdS 负载量分别在1.5%和0.41%(w)时, NiS-PdS/CdS获得最好活性, 最大产氢量达到6556 μmol·h-1, 是CdS活性的7倍, 是NiS/CdS的近3倍, 测得在λ=420 nm时的表观量子效率为47.5%. 助催化剂NiS 和PdS分别起到传递光生电子和光生空穴的作用,两者共负载相比于单独负载, 能使光生载流子的迁移和分离效率更高, 因此提高了光催化产氢活性.  相似文献   

2.
《化学:亚洲杂志》2017,12(5):515-523
Carbonyl‐grafted g‐C3N4 porous nanosheets (COCNPNS) were fabricated by means of a two‐step thermal process using melamine and oxalic acid as starting reagents. The combination of melamine with oxalic acid to form a melamine–oxalic acid supramolecule as a precursor is key to synthesizing carbonyl‐grafted g‐C3N4. The bulk carbonyl‐grafted g‐C3N4 (COCN) was further thermally etched onto porous nanosheets by O2 under air. In such a process, the carbonyl groups were partly removed and the obtained sample showed remarkably enhanced visible‐light harvesting and promoted the separation and transfer of photogenerated electrons and holes. With its unique porous structure and enhanced light‐harvesting capability, under visible‐light illumination (λ >420 nm) the prepared COCNPNS exhibited a superior photocatalytic hydrogen evolution rate of 83.6 μmol h−1, which is 26 times that of the p‐CN obtained directly from thermal polycondensation of melamine.  相似文献   

3.
Highly effective photocatalysts for the hydrogen‐evolution reaction were developed by conferring the linkers of NH2‐MIL‐125(Ti), a metal–organic framework (MOF) constructed from TiOx clusters and 2‐aminoterephthalic acid (linkers), with active copper centers. This design enables effective transfer of electrons from the linkers to the transient Cu2+/Cu+ centers, leading to 7000‐fold and 27‐fold increase of carrier density and lifetime of photogenerated charges, respectively, as well as high‐rate production of H2 under visible‐light irradiation. This work provides a novel design of a photocatalyst for hydrogen evolution using non‐noble Cu2+/Cu+ as co‐catalysts.  相似文献   

4.
《中国化学快报》2020,31(10):2795-2798
The development of photocatalysts for hydrogen evolution is a promising alternative to industrial hydrogen evolution; however, generation of high active, recyclable, inexpensive heterojunctions are still challenging. Herein, a novel strategy was developed to synthesize non-noble metal co-catalyst/solid solution heterojunctions using metal-organic frameworks (MOFs) as a precursor template. By adjusting the content of MOFs, a series of Cu1.8S/ZnxCd1-xS heterojunctions were obtained, and the Cu1.8S(3.7%)/Zn0.35Cd0.65S sample exhibits a maximum hydrogen evolution rate of 14.27 mmol h−1 g−1 with an apparent quantum yield of 3.7% at 420 nm under visible-light irradiation. Subsequently, the relationship between the heterojunction and photocatalytic activity were investigated by detailed characterizations and density functional theory (DFT) calculations, which reveal that loading Cu1.8S can efficiently extend the light absorption, meanwhile, the electrons can efficiently transfer from Zn0.35Cd0.65S to Cu1.8S, thus resulting more photogenerated electrons participating in surface reactions. This result can be valuable inspirations for the exploitation of advanced materials using rationally designed nanostructures for solar energy conversion.  相似文献   

5.
It is highly attractive but challenging to develop earth-abundant electrocatalysts for energy-saving electrolytic hydrogen generation. Herein, we report that Ni2P nanoarrays grown in situ on nickel foam (Ni2P/NF) behave as a durable high-performance non-noble-metal electrocatalyst for hydrazine oxidation reaction (HzOR) in alkaline media. The replacement of the sluggish anodic oxygen evolution reaction with such the more thermodynamically favorable HzOR enables energy-saving electrochemical hydrogen production with the use of Ni2P/NF as a bifunctional catalyst for anodic HzOR and cathodic hydrogen evolution reaction. When operated at room temperature, this two-electrode electrolytic system drives 500 mA cm−2 at a cell voltage as low as 1.0 V with strong long-term electrochemical durability and 100 % Faradaic efficiency for hydrogen evolution in 1.0 m KOH aqueous solution with 0.5 m hydrazine.  相似文献   

6.
Silver ferrite–graphene (AgFeO2‐G) as a nanocomposite photocatalyst shows potent visible‐light photocatalytic activity for the degradation of organic contaminants, and generates the strong oxidants hydroxyl radical (OH) and superoxide anion radical (O2•−) via photoelectrochemical decomposition of H2O and O2 in the presence of air and visible light irradiation. The photogenerated electrons of AgFeO2 can transfer easily from the conduction band to the reduced graphene oxide, efficiently preventing the direct recombination of electrons and holes. As a matter of fact, AgFeO2 has a low bandgap. Furthermore, AgFeO2 nanoparticles themselves have a magnetic property, which makes them magnetically separable. The experimental results show that the graphene nanosheets in the nanocomposite catalyst are exfoliated and decorated homogeneously with AgFeO2 nanoparticles. The photodegradation occurs in a short time (ca 40 min). Also, the photocatalytic activity of the nanocomposite does not show any clear loss after ten recycles of the degradation process.  相似文献   

7.
Ag@AgCl修饰的锐钛矿相TiO2纳米管的制备及其光催化性能   总被引:3,自引:0,他引:3  
首先采用水热合成法和双氧水处理制备了具有锐钛矿相的TiO2纳米管,然后通过沉淀和光化学反应将Ag@AgCl纳米粒子负载于其上,从而制得TiO2纳米管负载的表面等离子体光催化剂.结果表明,经Ag@AgCl纳米粒子修饰后,锐钛矿相TiO2纳米管因表面等离子共振效应而对可见光具有明显的响应,光生电子-空穴对更容易分离,因而T...  相似文献   

8.
It is highly attractive but challenging to develop earth‐abundant electrocatalysts for energy‐saving electrolytic hydrogen generation. Herein, we report that Ni2P nanoarrays grown in situ on nickel foam (Ni2P/NF) behave as a durable high‐performance non‐noble‐metal electrocatalyst for hydrazine oxidation reaction (HzOR) in alkaline media. The replacement of the sluggish anodic oxygen evolution reaction with such the more thermodynamically favorable HzOR enables energy‐saving electrochemical hydrogen production with the use of Ni2P/NF as a bifunctional catalyst for anodic HzOR and cathodic hydrogen evolution reaction. When operated at room temperature, this two‐electrode electrolytic system drives 500 mA cm−2 at a cell voltage as low as 1.0 V with strong long‐term electrochemical durability and 100 % Faradaic efficiency for hydrogen evolution in 1.0 m KOH aqueous solution with 0.5 m hydrazine.  相似文献   

9.
Photocatalytic H2 production via water splitting in a noble-metal-free photocatalytic system has attracted much attention in recent years. In this study, noble-metal-free Ni3N was used as an active cocatalyst to enhance the activity of g-C3N4 for photocatalytic H2 production under visible-light irradiation (λ > 420 nm). The characterization results indicated that Ni3N nanoparticles were successfully loaded onto the g-C3N4, which accelerated the separation and transfer of photogenerated electrons and resulted in enhanced photocatalytic H2 evolution under visible-light irradiation. The hydrogen evolution rate reached ~305.4 μmol h?1 g?1, which is about three times higher than that of pristine g-C3N4, and the apparent quantum yield (AQY) was ~0.45% at λ = 420. Furthermore, the Ni3N/g-C3N4 photocatalyst showed no obvious decrease in the hydrogen production rate, even after five cycles under visible-light irradiation. Finally, a possible photocatalytic hydrogen evolution mechanism for the Ni3N/g-C3N4 system is proposed.  相似文献   

10.
SiC-BiVO4-P and SiC-BiVO4-H composites have been prepared by precipitation method and hydrothermal method, respectively. Rod-like BiVO4 particles dispersed on the surface of micro-sized SiC particles homogeneously in SiC-BiVO4-H. Due to the formed heterostructure between BiVO4 and SiC, photo-generated electrons and holes were effectively separated. Under visible light irradiation, SiC-BiVO4-H exhibited the best performance for photocatalytic oxidation of Rhodamine B, achieved about 7.5 times improvement in photocatalytic degradation rate constants compared with that of the pristine SiC powder. The possible photocatalysis mechanism of SiC/BiVO4 related to the band positions of the semiconductors under visible light irradiation was also discussed in detail. In addition, the radicals trapping experiments revealed that all three radicals (holes, OH, and O2?) play an important role in the Rhodamine B degradation.  相似文献   

11.
Transition metal Fe, Co, Ni and Cu doped strontium titanate-rich SrTiO3@TiO2 (STO@T) materials were prepared by hydrothermal method. The prepared doped materials exhibit better photocatalytic CO2 reduction to CH4 ability under visible light conditions. Among them, Fe-doped and undoped SrTiO3@TiO2 under visible light conditions CO2 reduction products only CO, while M-STO@T (M=Co, Ni, Cu) samples converted CO2 to CH4. The average methane yield of Ni-doped STO@T samples are as high as 73.85 μmol g−1 h−1. The production of methane is mainly due to the increase in the response of the doped samples to visible light. And the increase in the separation rate of photogenerated electrons and holes and the efficiency of electron transport caused by the generation of impurity levels. The impurity level caused by Ti3+ plays an important role in the production of methane by CO2 visible light reduction. Ni doping effectively improves the photocatalytic performance of STO@T and CO2 reduction mechanism were explained.  相似文献   

12.
Herein, the synthesis of three nickel(II) dithiophosphonate complexes of the type [Ni{S2P(OR)(4-C6H4OMe)}2] [R=H ( 1 ), C3H7 ( 2 )] and [Ni{S2P(OR)(4-C6H4OEt}2] [R=(C6H5)2CH ( 3 )] is described; their structures were confirmed by single-crystal X-ray studies. These complexes were subjected to surfactant/solvent reactions at 300 °C for one hour as flexible molecular precursors to prepare either nickel sulfide or nickel phosphide particles. The decomposition of complex 2 in tri-octylphosphine oxide/1-octadecene (TOPO/ODE), TOPO/tri-n-octylphosphine (TOP), hexadecylamine (HDA)/TOP, and HDA/ODE yielded hexagonal NiS, Ni2P, Ni5P4, and rhombohedral NiS, respectively. Similarly, the decomposition of complex 1 in TOPO/TOP and HDA/TOP yielded hexagonal Ni2P and Ni5P4, respectively, and that of complex 3 in similar solvents led to hexagonal Ni5P4, with TOP as the likely phosphorus provider. Hexagonal NiS was prepared from the solvent-less decomposition of complexes 1 and 2 at 400 °C. NiS (rhom) had the best specific supercapacitance of 2304 F g−1 at a scan rate of 2 mV s−1 followed by 1672 F g−1 of Ni2P (hex). Similarly, NiS (rhom) and Ni2P (hex) showed the highest power and energy densities of 7.4 kW kg−1 and 54.16 W kg−1 as well as 6.3 kW kg−1 and 44.7 W kg−1, respectively. Ni5P4 (hex) had the lowest recorded overpotential of 350 mV at a current density of 50 mA cm−2 among the samples tested for the oxygen evolution reaction (OER). NiS (hex) and Ni5P4 (hex) had the lowest overpotentials of 231 and 235 mV to achieve a current density of 50 mA cm−2, respectively, in hydrogen evolution reaction (HER) examinations.  相似文献   

13.
Transition‐metal phosphides (TMPs) have emerged as promising catalyst candidates for the hydrogen evolution reaction (HER). Although numerous methods have been investigated to obtain TMPs, most rely on traditional synthetic methods that produce materials that are inherently deficient with respect to electrical conductivity. An electrospinning‐based reduction approach is presented, which generates nickel phosphide nanoparticles in N‐doped porous carbon nanofibers (Ni2P@NPCNFs) in situ. Ni2P nanoparticles are protected from irreversible fusion and aggregation in subsequent high‐temperature pyrolysis. The resistivity of Ni2P@NPCNFs (5.34 Ω cm) is greatly decreased by 104 times compared to Ni2P (>104 Ω cm) because N‐doped carbon NFs are incorporated. As an electrocatalyst for HER, Ni2P@NPCNFs reveal remarkable performance compared to other previously reported catalysts in acidic media. Additionally, it offers excellent catalytic ability and durability in both neutral and basic media. Encouraged by the excellent electrocatalytic performance of Ni2P@NPCNFs, a series of pea‐like MxP@NPCNFs, including Fe2P@NPCNFs, Co2P@NPCNFs, and Cu3P@NPCNFs, were synthesized by the same method. Detailed characterization suggests that the newly developed method could render combinations of ultrafine metal phosphides with porous carbon accessible; thereby, extending opportunities in electrocatalytic applications.  相似文献   

14.
A visible light driven, direct Z‐scheme reduced graphene oxide–Ag3PO4 (RGO–Ag3PO4) heterostructure was synthesized by means of a simple one‐pot photoreduction route by varying the amount of RGO under visible light illumination. The reduction of graphene oxide (GO) and growth of Ag3PO4 took place simultaneously. The effect of the amount of RGO on the textural properties and photocatalytic activity of the heterostructure was investigated under visible light illumination. Furthermore, total organic carbon (TOC) analysis confirmed 97.1 % mineralization of organic dyes over RGO–Ag3PO4 in just five minutes under visible‐light illumination. The use of different quenchers in the photomineralization suggested the presence of hydroxyl radicals ( . OH), superoxide radicals ( . O2?), and holes (h+), which play a significant role in the mineralization of organic dyes. In addition to that, clean hydrogen fuel generation was also observed with excellent reusability. The 4 RGO–Ag3PO4 heterostructure has a high H2 evolution rate of 3690 μmol h?1 g?1, which is 6.15 times higher than that of RGO.  相似文献   

15.
At present, inefficient charge separation of single photocatalyst impedes the development of photocatalytic hydrogen evolution. In this work, the CoSX/NiCo-LDH core-shell co-catalyst was cleverly designed, which exhibit high activity and high stability of hydrogen evolution in anhydrous ethanol system when coupled with CdS. Under visible light (λ≥420 nm) irradiation, the 3 %Co/NiCo/CdS composite photocatalyst exhibits a surprisingly high photocatalytic hydrogen evolution rate of 20.67 mmol g−1 h−1, which is 59 times than that of the original CdS. Continuous light for 20 h still showed good cycle stability. In addition, the 3 %Co/NiCo/CdS composite catalyst also shows good hydrogen evolution performance under the Na2S/Na2SO3 and lactic acid system. The fluorescence (PL), ultraviolet-visible diffuse reflectance (UV-vis) and photoelectrochemical tests show that the coupling of CdS and CoSX/NiCo-LDH not only accelerates the effective transfer of charges, but also greatly increases the absorption range of CdS to visible light. Therefore, the hydrogen evolution activity of the composite photocatalyst has been significantly improved. This work will provide new insights for the construction of new co-catalysts and the development of composite catalysts for hydrogen evolution in multiple systems.  相似文献   

16.
Developing bifunctional water-splitting photocatalysts is meaningful, but challenged by the harsh requirements of specific-facet single crystals with spatially separated reactive sites and anisotropic charge transfer paths contributed by well-built charge driving force. Herein, tunable ferroelectric polarization is introduced in Bi4NbO8Cl single crystal nanosheets to strengthen the orthogonal charge transfer channels. By manipulating the in-plane polarization from octahedral off-centering of Nb5+ and out-of-plane polarization from lone pair electron effect of anisotropic Bi3+, both the fast charge recombination in bulk catalyst and the process of charge trapping into surface states can be effectively modulated. Collaborating with modest polarization electric field and facet junction induced built-in electric field, cooperative charge tractive force is constructed, which reinforces the spatial separation and migration of photogenerated electrons and holes to {110} reductive site facet and {001} oxidation site facet, respectively. While excessive polarization charges impair the facet-selective charge separation characteristics and conversely promote charge recombination on the surface. As a result, polarity-optimized Bi4NbO8Cl shows an excellent H2 and O2 evolution rate of 54.21 and 36.08 μmol ⋅ h−1 in the presence of sacrificial reagents under visible light irradiation. This work unveils the function of ferroelectric polarization in tuning the intrinsic facet-selective charge transfer process of photocatalysts.  相似文献   

17.
Samarium and nitrogen co‐doped Bi2WO6 nanosheets were successfully synthesized by using a hydrothermal method. The crystal structures, morphology, elemental compositions, and optical properties of the prepared samples were investigated. The incorporation of samarium and nitrogen ions into Bi2WO6 was proved by X‐ray diffraction, energy dispersive X‐ray spectroscopy, and X‐ray photoelectron spectroscopy. UV/Vis diffuse reflectance spectroscopy indicated that the samarium and nitrogen co‐doped Bi2WO6 possessed strong visible‐light absorption. Remarkably, the samarium and nitrogen co‐doped Bi2WO6 exhibited higher photocatalytic activity than single‐doped and pure Bi2WO6 under visible‐light irradiation. Radical trapping experiments indicated that holes (h+) and superoxide radicals ( . O2?) were the main active species. The results of photoluminescence spectroscopy and photocurrent measurements demonstrated that the recombination rate of the photogenerated electrons and holes pairs was greatly depressed. The enhanced activity was attributed to the synergistic effect of the in‐built Sm3+/Sm2+ redox pair centers and the N‐doped level. The mechanism of the excellent photocatalytic activity of Sm‐N‐Bi2WO6 is also discussed.  相似文献   

18.
The formation of a series of oxygen-centred radicals on different TiO2 samples (P25 and two different rutile materials) under various conditions was investigated using X-band c.w. Electron Paramagnetic Resonance (EPR) spectroscopy. The radicals were formed either on thermally-reduced TiO2, or by UV irradiation of the oxide under an oxygen atmosphere. The nature and stability of the radicals was also explored as a function of surface hydration. On thermally reduced TiO2, containing surface and bulk Ti3+ centres, oxygen adsorption at 300 K results in the preferential formation and stabilisation of O2 - anions on the P25 surface, but O- and O3 - anions are generated on the rutile surfaces. Superoxide anions (O-) and trapped holes (O2 -) were also identified after photo-irradiation of the thoroughly dehydrated TiO2 samples under oxygen. The O- anions were only visible at low temperatures under continuous irradiation, while the O2 - anions were stable for days at 300 K. By comparison, on fully hydrated surfaces, no stable oxygen centred radicals could be detected on P25, while O2 - anions were easily observed on the rutile surfaces. On partially hydrated P25, the O-, O2 - and HO2 anions were detected after UV irradiation at 77 K; all radicals decayed upon warming to 298 K. On partially hydrated rutile, the O- and O2 - anions were detected and, unlike the case for P25, were found to be stable for days under the same conditions. The results illustrate the varied formation and stability of the oxygen centred radicals on TiO2 surfaces depending on the pretreatment conditions.  相似文献   

19.
为了提升微污染水体中抗生素的降解效率,利用过硫酸钠(PDS)激活协同手性介孔TiO2可见光催化(PDS/vis-TiO2)对四环素(TC)进行降解。详细对比研究了以手性TiO2作为催化剂的PDS激活(PDS/TiO2)、可见光催化(vis-TiO2)和PDS/vis-TiO2三种体系中,降解污染物的活性物种和污染物降解路径等的差异。结果表明,不对称的螺旋堆积结构在手性介孔TiO2中引入了丰富的Ti3+,不仅提升了其可见光响应,同时能够激活PDS生成自由基。PDS/vis-TiO2体系中光生空穴h+和·OH等多种自由基可以同时参与TC的降解,5 h内其对TC去除率可达到95%以上,远超PDS/TiO2体系(TC去除率为48.9%)和vis-TiO2体系(TC去除率为71.1%)。PDS加入到光催化体系中,会受到光生电子的激活而产生自由基,从而消耗光生电子,提升光生空穴和电子的分离率,达到协同增强污染物的降解能力。另外PDS激活后产生自由基也会大大增加体系对TC的降解性能。密度泛函理论计算和中间产物分析结果表明,TC在PDS/vis-TiO2体系中的降解路径包含了光生空穴h+攻击TC的降解路径,同时也包括自由基攻击TC的降解路径。  相似文献   

20.
《中国化学快报》2022,33(12):5189-5195
Carbonized polymer dots (CPDs) modified layer-structured CdBiO2Br (CPDs/CdBiO2Br) Z-scheme heterojunction hybrid material has been synthesized via simple solvothermal method. The hybrid material with Z-scheme heterojunction can effectively maintain the original highly oxidizing holes of CdBiO2Br and the highly reducing electrons of CPDs. In addition, the construction of heterostructure is beneficial to the migration and separation of photogenerated carriers. Under visible light irradiation, 6 wt% CPDs/CdBiO2Br showed the best catalytic activity for degradation of organic pollutants. Free radical capture experiments and ESR analysis confirmed that the main active species are ?O2? and h+. The decomposition process of organic pollutants was analyzed by LC-MS. Finally, the probable visible light mechanism performance of CPDs/CdBiO2Br as direct Z-scheme heterojunction photocatalytic materials was proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号