首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Heavy metal carboxylate degradation severely affects thousands of oil paintings. Relative humidity has been reported to accelerate the rate of the reactions. To evaluate its role further, water diffusion and molecular mobility of protons in linseed oil-based lead white paints were studied by unilateral NMR and 1H HRMAS spectroscopy. The results indicate that exposure to high %RH for relatively long times affects the dynamics of the oil paint's mobile fraction and that the effect is more pronounced as the thickness of the film increases. It was found that the paint can absorb appreciable amounts of water and has a porosity of approximately 6 % available for the diffusion of water, for which a regime of restricted diffusion was observed. Furthermore, the presence of bound and free-moving water, due to the possible formation of hydrated ionic-group clusters, supports the hypothesis of a polymeric/ionomeric network, as well as regions of essentially water free to move as in the bulk. The findings allow a better understanding of the role of water as a factor activating the degradation process in linseed oil-based lead white paints.  相似文献   

2.
The conservation of paintings is fundamental to ensure that future generations will have access to the ideas of the grand masters who created these art pieces. Many factors, such as humidity, temperature, light, and pollutants, pose a risk to the conservation of paintings. To help with painting conservation, it is essential to be able to noninvasively study how these factors affect paintings and to develop methods to investigate their effects on painting degradation. Hence, the use of mobile nuclear magnetic resonance (NMR) as a method of investigation of paintings is gaining increased attention in the world of Heritage Science. In this mini-review, we discuss how this method was used to better understand the stratigraphy of paintings and the effect different factors have on the painting integrity, to analyze the different cleaning techniques suitable for painting conservation, and to show how mobile NMR can be used to identify forgeries. It is also important to keep in mind its limitations and build upon this information to optimize it to extend its applicability to the study of paintings and other precious objects of cultural heritage.  相似文献   

3.
X-ray fluorescence spectroscopy (XRF) and Raman spectroscopy have been used to examine 15th century mediaeval and 16th century renaissance vault paintings in the Our Lady's Cathedral (Antwerp, Belgium) in view of their restoration. The use of mobile instruments made it possible to work totally non-destructively. This complementary approach yields information on the elemental (XRF) and on the molecular composition (Raman) of the pigments. For the 15th century vault painting the pigments lead–tin yellow (Pb2SnO4), lead white (2PbCO3·Pb(OH)2), vermilion (HgS), massicot (PbO) and azurite (2CuCO3·Cu(OH)2) could be identified. The pigments used for the 16th century vault painting could be identified as red lead (Pb3O4), hematite (Fe2O3), lead white (2PbCO3·Pb(OH)2) and azurite (2CuCO3·Cu(OH)2). For both paintings the presence of the strong Raman scatterer calcite (CaCO3) resulted in a difficult identification of the pigments by Raman spectroscopy. The presence of gypsum (CaSO4·2H2O) on the mediaeval vault painting probably indicates that degradation took place.  相似文献   

4.
Up to 70 % of the oil paintings conserved in collections present metal soaps, which result from the chemical reaction between metal ions present in the painted layers and free fatty acids from the lipidic binders. In recent decades, conservators and conservation scientists have been systematically identifying various and frequent conservation problems that can be linked to the formation of metal soaps. It is also increasingly recognized that metal soap formation may not compromise the integrity of paint so there is a need for careful assessment of the implications of metal soaps for conservation. This review aims to critically assess scientific literature related to commonly adopted analytical techniques for the analysis of metal soaps in oil paintings. A comparison of different analytical methods is provided, highlighting advantages associated with each, as well as limitations identified through the analysis of reference materials and applications to the analysis of samples from historical paintings.  相似文献   

5.
Acrylic emulsion paint is among the most common media employed by 20th century artists. Since early acrylic paintings have begun to require the attention of conservators, scientists are working to characterize the properties of these paints to facilitate conservation efforts. In this study, we report an investigation of the physical and chemical properties of acrylic emulsion paints using single-sided NMR in conjunction with gloss measurements and scanning electron microscopy-energy dispersive spectrometry. Combining the data from these techniques gives insight into pigment-base interactions and the acrylic curing process, showing that as pigment concentration is increased in paints, the amount of acrylic base adsorbed to pigment particles increases, resulting in films with differing relaxation times. This research both emphasizes and contextualizes the utility of NMR relaxometry in studying cultural heritage objects and prompts further study into the effects of pigment concentration on the curing and conservation of paint films.  相似文献   

6.
Raman microscopy has been applied to the study of 15th century wall paintings in a chapel of St. Orso Priory palace (Aosta, Italy) in view of their restoration. The use of a transportable instrument has made it possible to work non-destructively in situ without sampling. The main inorganic pigments used by the unknown artist, namely mercury sulphide, azurite, white lead, red and yellow ochre, carbon black and lead tin yellow type I have been identified, and the presence of organic substances and of some decay products (calcium sulphate and oxalate) has been observed.  相似文献   

7.
The use of copaiba oil has been reported since the 16th century in Amazon traditional medicine, especially as an anti-inflammatory ingredient and for wound healing. The use of copaiba oil continues today, and it is sold in various parts of the world, including the United States. Copaiba oil contains mainly sesquiterpenes, bioactive compounds that are popular for their positive effect on human health. As part of our ongoing research endeavors to identify the chemical constituents of broadly consumed herbal supplements or their adulterants, copaiba oil was investigated. In this regard, copaiba oil was subjected to repeated silica gel column chromatography to purify the compounds. As a result, one new and seven known sesquiterpenes/sesquiterpenoids were isolated and identified from the copaiba oil. The new compound was elucidated as (E)-2,6,10-trimethyldodec-8-en-2-ol. Structure elucidation was achieved by 1D- and 2D NMR and GC/Q-ToF mass spectral data analyses. The isolated chemical constituents in this study could be used as chemical markers to evaluate the safety or quality of copaiba oil.  相似文献   

8.
This article describes the study carried out on a series of oil paintings on canvas from the eighteenth century that were restored at Centro de Producción e Investigación en Restauración y Conservación Artística y Bibliográfica - Tarea (CEIRCAB-Tarea), Buenos Aires, Argentina: the San Pedro González Telmo Sibyls. Experimental study was undertaken to identify inorganic pigments and the technique used in their confection; and, in this way, try to add information about their local origin. Therefore special emphasis was put to infer technologies used in the manufacturing of these paintings. Elemental analysis was performed by total reflection X-ray fluorescence spectrometry (TXRF) and complemented by optical and polarized light microscopy. Microsampling was carefully done over areas of the paintings which were damaged and where a small additional loss will not be noticed. This investigation has shown that a variety of pigments were used, namely earth pigments (red and yellow ochres), white lead, vermilion, etc., and they were used either pure or in mixtures. This characterization helped conservators in their decisions regarding a better understanding of the deterioration processes. In addition, this research about the material composition allowed the art historians and restorers the possibility to obtain information about where, when or by whom The San Pedro González Telmo Sibyls may have been painted.  相似文献   

9.
The Night Watch, painted in 1642 and on view in the Rijksmuseum in Amsterdam, is considered Rembrandt's most famous work. X-ray powder diffraction (XRPD) mapping at multiple length scales revealed the unusual presence of lead(II) formate, Pb(HCOO)2, in several areas of the painting. Until now, this compound was never reported in historical oil paints. In order to get insights into this phenomenon, one possible chemical pathway was explored thanks to the preparation and micro-analysis of model oil paint media prepared by heating linseed oil and lead(II) oxide (PbO) drier as described in 17th century recipes. Synchrotron radiation based micro-XRPD (SR-μ-XRPD) and infrared microscopy were combined to identify and map at the micro-scale various neo-formed lead-based compounds in these model samples. Both lead(II) formate and lead(II) formate hydroxide Pb(HCOO)(OH) were detected and mapped, providing new clues regarding the reactivity of lead driers in oil matrices in historical paintings.  相似文献   

10.
The influence of the presence and the type of pigments in the lipid binding media of paintings were studied by gas chromatography with flame ionization detector. The drying oils were linseed stand oil, poppy oil and sunflower oil, and the pigments studied were cadmium red, cobalt blue, tin white, lead white, chalk and plaster of Paris, commonly used in paintings. The results indicate that the stearic/palmitic ratio and the presence of pigments are quite stable during ageing. However, some differences in the oleic acid/palmitic acid ratio were found, depending on the type of pigment present in the lipid binding media. These variations are related to the drying effect of the pigments. The proposed method has been applied to the identification of drying oils in two samples from baroque paintings in the "Basilica de la Virgen de los Desamparados" of Valencia, Spain.  相似文献   

11.
This work reports the use of a portable Raman microprobe spectrometer for the analysis of bulk and decaying compounds in carbonaceous materials such as stones, mortars and wall paintings. The analysed stones include limestone, dolomite and carbonaceous sandstone, gypsum and calcium oxalate, both mono- and dihydrated, being the main inorganic degradation products detected. Mortars include bulk phases with pure gypsum, calcite and mixtures of both or with sand, soluble salts being the most important degradation products. The pigments detected in several wall paintings include Prussian blue, iron oxide red, iron oxide yellow, vermilion, carbon black and lead white. Three different decaying processes have been characterised in the mortars of the wall paintings: (a) a massive absorption of nitrates that reacted with calcium carbonate and promoted the unbinding of pigment grains, (b) the formation of black crusts in the vault of the presbytery and (c) the thermodecomposition of pigments due to a fire.  相似文献   

12.
Synchrotron radiation X-ray diffraction (μ-SR-XRD) and Fourier transform infrared spectroscopy (μ-SR-FTIR) are used in the non-destructive identification of reaction and aging compounds from micrometric ancient painting layers. The combination of the micrometer size and non-destructive nature of the techniques together with the high resolution and brilliance of the synchrotron radiation has proved to be a procedure most advantageous for the study of reaction, aging and degradation processes. Copper, lead and calcium carboxylates and oxalates are determined in the chromatic, preparation and alteration layers from 15th century egg tempera and oil paintings. Their nature and crystallinity have been assessed. Some hypothesis about the mechanisms of development of both carboxylates and oxalates are presented.  相似文献   

13.
The interaction of pigments and binding media may result in the production of metal soaps on the surface of paintings which modifies their visible appearance and state of conservation. To characterise more fully the metal soaps found on paintings, several historically accurate oil and egg yolk tempera paint reconstructions made with different pigments and naturally aged for 10 years were submitted to attenuated total reflectance Fourier transform infrared (ATR FTIR) microspectroscopic analyses. Standard metal palmitates were synthesised and their ATR spectra recorded in order to help the identification of metal soaps. Among the different lead-based pigments, red lead and litharge seemed to produce a larger amount of carboxylates compared with lead white, Naples yellow and lead tin yellow paints. Oil and egg tempera litharge and red lead paints appeared to be degraded into lead carbonate, a phenomenon which has been observed for the first time. The formation of metal soaps was confirmed on both oil and egg tempera paints based on zinc, manganese and copper and in particular on azurite paints. ATR mapping analyses showed how the areas where copper carboxylates were present coincided with those in which azurite was converted into malachite. Furthermore, the key role played by manganese in the production of metals soaps on burnt and raw sienna and burnt and raw umber paints has been observed for the first time. The formation of copper, lead, manganese, cadmium and zinc metal soaps was also identified on egg tempera paint reconstructions even though, in this case, the overlapping of the spectral region of the amide II band with that of metal carboxylates made their identification difficult.  相似文献   

14.
Non-destructive and non-invasive micro-Raman fibre optic and micro-XRF analyses were performed to study a wallpaper from the beginning of the 19th century. The complementarity of these two non-destructive techniques is shown in this work. The analysed artwork is considered one of the most beautiful wallpapers ever manufactured according to the catalogues and books; it is known as Chasse de Compiègne, manufactured by Jacquemart, Paris, in 1812. During the analysis, an unexpected pigment was detected by both analytical techniques: lead-tin yellow type II. This pigment was used until ca. 1750, when other yellow pigments replaced it, thus it is very difficult to find it in paintings afterwards. Together with this pigment, red lead, Prussian blue, brochantite, yellow iron oxide, calcium carbonate, vermilion, carbon black of animal origin (bone black), lead white, and raw and burnt sienna were also determined by combining the analytical information provided by both techniques. A possible degradation of brochantite to antlerite is also discussed.  相似文献   

15.
Paintings on canvas are complex structures created by superimposing layers of different composition. Investigations on the structure of these artworks can provide essential information on their state of conservation, pictorial technique, possible overpaintings, and in planning a proper conservation plan. Standard methods of investigation consist in sampling a limited number of fragments for stratigraphic analyses. Despite the recognized validity of these methods, they are affected by evident limitations. Nuclear magnetic resonance (NMR) profiling, often named NMR stratigraphy, is an NMR relaxometry technique applied by single-sided portable devices developed to overcome the disadvantages of microinvasive stratigraphic analyses. The potential of this approach on artworks, including wall paintings and a few examples of painted canvas, is described in the literature. In this study, NMR profiles of painting on canvas were examined by analyzing transverse relaxation time data by T2 quasi-continuous distributions and the results compared with standard stratigraphic cross-sections analysis. Combining signal intensity and T2 quasi-continuous distributions, the identification of textile, preparatory, and paint layers was enhanced. The diction “NMR stratigraphy” for these inhomogeneous layered artworks is also discussed. Indeed, unlike the stratigraphic cross-sections, NMR profiles provide information on a volume (flat slice), rather than on a surface, and the collected signal can derive from nonuniform and partially overlapping layers. This study paves the way for extensive investigations on relaxation time quasi-continuous distributions in various binder/pigment mixtures in order to improve the reliability of NMR profile as an innovative, non–invasive, and nondestructive method for analyzing paintings on canvas.  相似文献   

16.
Dihedral fullerenes are thermodynamically stable molecules with D nd or D nh symmetry.Based on experimental findings,two series of dihedral fullerenes with five-fold(C5) and six-fold(C6) symmetry have been studied using density functional theory(DFT).The DFT calculations showed that for both series the stabilities increased with increasing fullerene size.Structural analyses indicated that the stabilities are related to specific local geometries.In the case of the more abundant C5 series,the presence of approximately planar pentagons and hexagons on the top bowl favors their formation.That is to say,those fullerenes with small dihedral angles within the polygons are readily formed,because planar hexagons lead to strengthened conjugation which lowers average bonding energies(ABE) and increases thermodynamic stabilities.Non-planar hexagons at equatorial positions in tube-shaped fullerenes have an adverse effect on the conjugation and inhibit their formation.Calculations also demonstrated that fullerenes in the two series,including C 50(D 5h),C 60(D 6h),C 80(D 5d),C 96(D 6d),C 110(D 5h),and C 120(D 5d),have thermodynamically stable triplet structures with strong conjugation.The calculated IR and 13 C NMR spectra of the fullerenes show some similarities and regular trends due to their homogenous structures.The electronic structures indicate that short double bonds in hexagons with high electron occupancies are readily attacked by electrophilic agents and can also be coordinated by transition metals.Mechanistic discussions suggested that C 2 additions and C 2 losses constitute reversible processes at high temperature and C 2 additions in pentagonal fusions are crucial to the kinetics of the curvature of structures.C 3 additions lead to the formation of large fullerenes of other types.  相似文献   

17.
采用低场核磁共振技术,针对油基钻井液油包水型乳状液乳滴的稳定性进行研究。引入弛豫试剂Mn Cl2·4H2O对W/Q型乳状液的T2分布曲线进行定性分析,位于10~1 000 ms之间的弛豫峰对应于中度可自由移动水和白油弛豫峰的叠合峰,定义为乳状液弛豫峰;1 000~10 000 ms之间的峰为高度可自由移动水的弛豫峰。基于此,以弛豫峰峰形为定性指标,弛豫峰面积比率和弛豫峰间距为定量指标,针对弛豫试剂、油水比和老化温度等因素对乳状液横向弛豫时间T2分布曲线的影响进行了分析,进而深入研究了其对油基钻井液乳状液乳滴稳定性的影响。还将低场核磁共振分析技术运用于油基钻井液乳状液体系相对含油率的测量。结果表明,低场核磁共振是一种高效、快捷、准确反映油基钻井液乳状液稳定性的分析测试技术,同时,还可用于油基钻井液乳状液或原油相对含油率的测量。  相似文献   

18.
Summary: The use of renewable raw materials in the polymer industries is becoming increasingly popular because of environmental concerns and the need to substitute fossil resources. Plant oils with triglyceride backbones can be chemically modified and used to synthesize polymers from renewable resources (biopolymers). In the present study, linseed oil was epoxidized using a chemo-enzymatic method based on Candida Antarctica lipase B (CALB) as a biocatalyst and the modified linseed oil was cured using maleinated linseed oil and a commercial polyamide resin. The amount of epoxidation achieved depended on the amount of lipase used and was determined by infrared (IR) and nuclear magnetic resonance (NMR) spectroscopies. With 20% (weight per weight) catalyst concentration based on the wt % of oil a degree of epoxidation of > 90% was achieved. The cross-linking reaction of epoxidized linseed oil with the maleinated linseed oil and the polyamide resin was studied using differential scanning calorimetry (DSC). DSC traces showed that an increase in epoxidation degree lead to larger values for the exothermic enthalpy integrals of the curing reactions and hence to a higher reactivity of the linseed oil towards the cross-linking agents.  相似文献   

19.
The present study contains the analyses performed for pigment samples taken from the Princely church of Curtea de Arges, one of the oldest churches in Romania. The results of our investigations have shown the source of these samples, thus being identified the pigments: natural ultramarine, cinnabar, red earth, and calcium carbonate in the painting from the 14th century, the pigments: lead white, zinc white, and Prussian blue in the repainting from the 19th century and the pigments zinc white, titanium dioxide white, bone white, yellow ochre, red ochre, green earth, artificial ultramarine, and mars red in the interventions carried out in the 20th century. The analyses consisted of light microscopy (LM) and microchemical tests, as well as energy dispersive X-ray (EDX) analysis. This system of analyses allows one to precisely determine the authenticity of certain pigments, thus avoiding the dating errors for different interventions carried out on the original mural painting from the Saint Nicholas Princely church of Curtea de Arges.  相似文献   

20.
Computational modelling applied to cultural heritage can assist the characterization of painting materials and help to understand their intrinsic and external degradation processes. The degradation of the widely employed zinc oxide (ZnO)—a white pigment mostly used in oil paints—leads to the formation of metal soaps, complexes of Zn ions and long-chain fatty acids coming from the degradation of the oil binder. Being a serious problem affecting the appearance and the structural integrity of many oil paintings, it is relevant to characterize the structure of these complexes and to understand the reaction pathways associated with this degradation process. Density functional theory (DFT) calculations were performed to investigate the adsorption of the acetate and acetic acid on relatively large ZnO clusters and the formation of Zn–acetate complexes. Carboxylic acids with longer alkyl chains were then investigated as more realistic models of the fatty acids present in the oil medium. In addition, DFT calculations using a periodic ZnO slab were performed in order to compare the obtained results at different levels of theory. Optimization calculations as well as the formation energies of the ZnO@carboxylate coupled systems and the thermodynamics leading to possible degradation products were computed. Our results highlight the potential for DFT calculations to provide a better understanding of oil paint degradation, with the aim of contributing to the development of strengthening and conservation strategies of paintings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号