首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The heat equation is parabolic partial differential equation and occurs in the characterization of diffusion progress. In the present work, a new fractional operator based on the Rabotnov fractional-exponential kernel is considered. Next, we conferred some fascinating and original properties of nominated new fractional derivative with some integral transform operators where all results are significant. The fundamental target of the proposed work is to solve the multidimensional heat equations of arbitrary order by using analytical approach homotopy perturbation transform method and residual power series method, where new fractional operator has been taken in new Yang-Abdel-Aty-Cattani (YAC) sense. The obtained results indicate that solution converges to the original solution in language of generalized Mittag-Leffler function. Three numerical examples are discussed to draw an effective attention to reveal the proficiency and adaptability of the recommended methods on new YAC operator.  相似文献   

2.
In this paper, we propose a new concept of derivative with respect to an arbitrary kernel function. Several properties related to this new operator, like inversion rules and integration by parts, are studied. In particular, we introduce the notion of conjugate kernels, which will be useful to guaranty that the proposed derivative operator admits a right inverse. The proposed concept includes as special cases Riemann‐Liouville fractional derivatives, Hadamard fractional derivatives, and many other fractional operators. Moreover, using our concept, new fractional operators involving certain special functions are introduced, and some of their properties are studied. Finally, an existence result for a boundary value problem involving the introduced derivative operator is proved.  相似文献   

3.
This paper studies partial differential equation model with the new general fractional derivatives involving the kernels of the extended Mittag–Leffler type functions. An initial boundary value problem for the anomalous diffusion of fractional order is analyzed and considered. The fractional derivative with Mittag–Leffler kernel or also called Atangana and Baleanu fractional derivative in time is taken in the Caputo sense. We obtain results on the existence, uniqueness, and regularity of the solution.  相似文献   

4.
In this article, a new (2 + 1)-dimensional local fractional breaking soliton equation is derived with the local fractional derivative. Applying the traveling wave transform of the non-differentiable type, the (2 + 1)-dimensional local fractional breaking soliton equation is converted into a nonlinear local fractional ordinary differential equation. By defining a set of elementary functions on Cantor sets, a novel analytical technique namely the Mittag–Leffler function-based method is employed for the first time ever to construct the exact solutions. The solutions on the Cantor sets are presented via the 3-D contours. It reveals that the proposed method is effective and powerful and is expected to give some inspiration for the study of the local fractional PDEs.  相似文献   

5.
In this article, the fractional variational iteration method is employed for computing the approximate analytical solutions of degenerate parabolic equations with fractional time derivative. The time‐fractional derivatives are described by the use of a new approach, the so‐called Jumarie modified Riemann–Liouville derivative, instead in the sense of Caputo. The approximate solutions of our model problem are calculated in the form of convergent series with easily computable components. Moreover, the numerical solution is compared with the exact solution and the quantitative estimate of accuracy is obtained. The results of the study reveal that the proposed method with modified fractional Riemann–Liouville derivatives is efficient, accurate, and convenient for solving the fractional partial differential equations in multi‐dimensional spaces without using any linearization, perturbation or restrictive assumptions. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
In calcium signalling, activation of receptor is a very significant aspect. To understand the mechanism of calcium signalling, receptors are the important components. The mobilization of intracellular calcium from intracellular stores depends upon binding of agonist to cell surface receptor. Thrombin is chosen as model ligand. In order to understand thrombin receptor activation, we analyze fractional model incorporating derivative of arbitrary order and nonsingular kernel which can precisely describe the effect of memory and can explain the model in better and more efficient manner as compared with fractional operators with singular kernels. The problem has been solved by perturbation iterative method. Using fixed‐point theorem, it is proved that solution of the system will exist and also it will be unique.  相似文献   

7.
The main aim of the present work is to propose a new and simple algorithm for space-fractional telegraph equation, namely new fractional homotopy analysis transform method (HATM). The fractional homotopy analysis transform method is an innovative adjustment in Laplace transform algorithm (LTA) and makes the calculation much simpler. The proposed technique solves the nonlinear problems without using Adomian polynomials and He’s polynomials which can be considered as a clear advantage of this new algorithm over decomposition and the homotopy perturbation transform method (HPTM). The beauty of the paper is error analysis which shows that our solution obtained by proposed method converges very rapidly to the known exact solution. The numerical solutions obtained by proposed method indicate that the approach is easy to implement and computationally very attractive. Finally, several numerical examples are given to illustrate the accuracy and stability of this method.  相似文献   

8.
In this paper, we obtain approximate‐analytical solutions of a cancer chemotherapy effect model involving fractional derivatives with exponential kernel and with general Mittag‐Leffler function. Laplace homotopy perturbation method and the modified homotopy analysis transform method were applied. The first method is based on a combination of the Laplace transform and homotopy methods, while the second method is an analytical technique based on homotopy polynomial. The cancer chemotherapy effect equations are solved numerically and analytically using the aforesaid methods. Illustrative examples are included to demonstrate the validity and applicability of the presented technique with new fractional‐order derivatives with exponential decay law and with general Mittag‐Leffler law.  相似文献   

9.
In this paper, we implement Chebyshev pseudo-spectral method for solving numerically system of linear and non-linear fractional integro-differential equations of Volterra type. The proposed technique is based on the new derived formula of the Caputo fractional derivative. The suggested method reduces this type of systems to the solution of system of linear or non-linear algebraic equations. We give the convergence analysis and derive an upper bound of the error for the derived formula. To demonstrate the validity and applicability of the suggested method, some test examples are given. Also, we present a comparison with the previous work using the homotopy perturbation method.  相似文献   

10.
利用Adomian分解法, 得到了由任意阶分数微分描述的具有阻尼特性的黏弹性连续梁的解析解.解中包含了任意的初始条件和零输入.为了更明确的分析, 假定初始条件是奇次的,输入受力是针对某种特定梁的特殊过程.分别考虑了两种简单情况下梁的响应:阶跃激励和脉冲激励.然后在系统的不同组参数条件下绘制了梁的位移图,并且讨论了梁在不同微分阶数下响应情况.  相似文献   

11.
This work presents an iterative scheme for the numerical solution of the space-time fractional two-dimensional advection–reaction–diffusion equation applying homotopy perturbation with Laplace transform using Caputo fractional-order derivatives. The solution obtained is beneficial and significant to analyze the modeling of superdiffusive systems and subdiffusive system, anomalous diffusion, transport process in porous media. This iterative technique presents the combination of homotopy perturbation technique, and Laplace transforms with He's polynomials, which can further be applied to numerous linear/nonlinear two-dimensional fractional models to computes the approximate analytical solution. In the present method, the nonlinearity can be tackle by He's polynomials. The salient features of the present scientific work are the pictorial presentations of the approximate numerical solution of the two-dimensional fractional advection–reaction–diffusion equation for different particular cases of fractional order and showcasing of the damping effect of reaction terms on the nature of probability density function of the considered two-dimensional nonlinear mathematical models for various situations.  相似文献   

12.
A novel collocation method based on Genocchi wavelet is presented for the numerical solution of fractional differential equations and time‐fractional partial differential equations with delay. In this work, to achieve the approximate solution with height accuracy, we employed the operational matrix of integer derivative and the pseudo‐operational matrix of fractional derivative in Caputo sense. Also, based on Genocchi function properties, we presented delay and pantograph operational matrices of Genocchi wavelet functions (GWFs). Due to operational and pseudo‐operational matrices, the equations under this study can be turned into nonlinear algebraic equations with the unknown GWF coefficients. For illustrating the upper bound of error for the proposed method, we estimate the error in the sense of Sobolev space. In addition, to demonstrate the efficacy of the pseudo‐operational matrix of fractional derivative, we investigate the upper bound of error for the mentioned matrix. Finally, the algorithm based on the proposed approach is implemented for some numerical experiments to confirm accuracy and applicability.  相似文献   

13.
This paper is devoted to the time‐fractional gas dynamics equation with Caputo derivative. Fractional operators are very natural tools to model memory‐dependent phenomena. Modified iteration method is proposed to obtain the approximate and analytical solution of the fractional gas dynamics equation. This method is a combined form of the new iteration method and Laplace transform. Modified iteration method really is powerful and simple method compared with other methods. Existence and uniqueness of solution are proven. Numerical results for different cases of the equation are obtained. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
This paper presents a shifted fractional‐order Jacobi orthogonal function (SFJF) based on the definition of the classical Jacobi polynomial. A new fractional integral operational matrix of the SFJF is presented and derived. We propose the spectral Tau method, in conjunction with the operational matrices of the Riemann–Liouville fractional integral for SFJF and derivative for Jacobi polynomial, to solve a class of time‐fractional partial differential equations with variable coefficients. In this algorithm, the approximate solution is expanded by means of both SFJFs for temporal discretization and Jacobi polynomials for spatial discretization. The proposed tau scheme, both in temporal and spatial discretizations, successfully reduced such problem into a system of algebraic equations, which is far easier to be solved. Numerical results are provided to demonstrate the high accuracy and superiority of the proposed algorithm over existing ones. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
In this paper, by introducing the fractional derivative in the sense of Caputo, the generalized two-dimensional differential transform method (DTM) is directly applied to solve the coupled Burgers equations with space- and time-fractional derivatives. The presented method is a numerical method based on the generalized Taylor series formula which constructs an analytical solution in the form of a polynomial. Several illustrative examples are given to demonstrate the effectiveness of the generalized two-dimensional DTM for the equations.  相似文献   

16.
In this paper, the sinc‐collocation method (SCM) is investigated to obtain the solution of the nonlinear fractional order differential equations based on the relatively new defined fractional derivative, beta‐derivative. For this purpose, a theorem is proved for the approximate solution obtained from the SCM. Moreover, convergence analysis of the SCM is presented. To show the efficiency and the simplicity of the proposed method, some examples are solved, and the results are compared with the exact solutions of the considered equations.  相似文献   

17.
In the current work, a generalized mathematical model based on the Coimbra time fractional derivative of variable order, which describes an anomalous mobile-immobile transport process in complex systems is investigated numerically. A robust numerical technique based on the meshfree strong form method combined with an efficient time-stepping scheme is performed to compute the approximate solution of the problem with high accuracy. For this purpose, firstly, an effective implicit time discretization approach is used for discretizing the variable-order time fractional problem in the time direction. Then a global meshless technique based on the method of approximate particular solutions is performed to fully discretize the model in the spatial domain. The validity and performance of the procedure to numerically simulate the proposed generalized solute transport model on regular and irregular domains are demonstrated through some numerical examples.  相似文献   

18.
In this paper, we apply the dual reciprocity boundary elements method for the numerical solution of two‐dimensional linear and nonlinear time‐fractional modified anomalous subdiffusion equations and time‐fractional convection–diffusion equation. The fractional derivative of problems is described in the Riemann–Liouville and Caputo senses. We employ the linear radial basis function for interpolation of the nonlinear, inhomogeneous and time derivative terms. This method is improved by using a predictor–corrector scheme to overcome the nonlinearity which appears in the nonlinear problems under consideration. The accuracy and efficiency of the proposed schemes are checked by five test problems. The proposed method is employed for solving some examples in two dimensions on unit square and also in complex regions to demonstrate the efficiency of the new technique. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
In the present work, linear combinations of Caputo fractional derivatives are fast evaluated based on the efficient sum-of-exponentials (SOE) approximation for kernels in Caputo fractional derivatives with an absolute error $\epsilon,$ which is a further work of the existing results in [13] (Commun. Comput. Phys., 21 (2017), pp. 650-678) and [16] (Commun. Comput. Phys., 22 (2017), pp. 1028-1048). Both the storage needs and computational amount are significantly reduced compared with the direct algorithm. Applications of the proposed fast algorithm are illustrated by solving a second-order multi-term time-fractional sub-diffusion problem. The unconditional stability and convergence of the fast difference scheme are proved. The CPU time is largely reduced while the accuracy is kept, especially for the cases of large temporal level, which is displayed by numerical experiments.  相似文献   

20.
The block-by-block method, proposed by Linz for a kind of Volterra integral equations with nonsingular kernels, and extended by Kumar and Agrawal to a class of initial value problems of fractional differential equations (FDEs) with Caputo derivatives, is an efficient and stable scheme. We analytically prove and numerically verify that this method is convergent with order at least 3 for any fractional order index $\alpha>0$.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号