首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 543 毫秒
1.
Chalcogenide bulk glasses Ge20Se80?xTex for x  (0, 10) have been prepared by systematic replacement of Se by Te. Selected glasses have been doped with Er and Pr, and all systems have been characterized by transmission spectroscopy, measurements of dc electrical conductivity and low-temperature photoluminescence. Absorption coefficient has been derived from measured transmittance and estimated reflectance. Both absorption and low-temperature photoluminescence spectra reveal shifts of absorption edge and/or dominant luminescence band to longer wavelength due to Te  Se substitution. Arrhenius plots of dc electrical conductivity, in the temperature range 300–450 K, are characterized by activation energies roughly equal to the half of the optical gap. Arrhenius plots for temperatures below 300 K yield much lower activation energies. The dominant low-temperature luminescence band centered at about half the band gap energy starts to quench above 200 K and a new band appears at 900 nm. The band at 900 nm, due to band to band transitions, overwhelms the spectra at room temperature. Systems doped with Er exhibit a strong luminescence due to 4I13/2  I15/2 transition of Er3+ ion at 1539 nm, and Pr doped samples exhibit a relatively weak luminescence peak at 1590 nm, which we tentatively assign to 3F3  3H4 transition of Pr3+ ion.  相似文献   

2.
Erbium doped chalcogenide glasses are of great interest in the integrated optoelectronic technology due to their Er3+ intra-4f emission at the standard telecommunication wavelength of 1.54 μm. In this paper, the photoluminescence (PL) of a series of (GeS2)x(Ga2S3)100−x (x = 75 and 67) glasses doped with high amounts of Er2S3 (1.8, 2.1, 2.4 and 2.7 mol%) under excitation with 1064 nm light has been studied. A quenching PL effect at 1.22 аt.% Er-doped (GeS2)75(Ga2S3)25 and 1.39 аt.% Er-doped (GeS2)67(Ga2S3)33 glasses has been established. The relative changes in PL line-shape at around 1540 nm have been estimated by deconvoluting the spectra to Gaussian sub-bands centered at 1519 ± 1, 1537 ± 1, 1546 ± 1, 1555 ± 1 and 1566 ± 4 nm, which correspond to F21, F11, F22, F12 and F13 transitions in the 4I13/2 and 4I15/2 energy levels and have intensity and manifestation that are strongly depend on the Er-doping level. The influence of gallium on the PL efficiency has been evaluated with a view to enhanced emission cross-section.  相似文献   

3.
B. Frumarova  M. Frumar  J. Oswald  M. Kincl  M. Vlcek 《Journal of Non》2009,355(37-42):1865-1868
Glasses of systems 100-y((GeS2)80(Sb2S3)20−x(PbI2)x)yPr2S3, x = 0; 2; 5, 8; y = 0; 0.01; 0.1; 0.5 and 99.9-z((GeS2)80(Sb2S3)18(PbI2)2)0.1Pr2S3zYb2S3, z = 0.05; 0.1; 0.15) were synthesized in high purity. Optically well transparent glasses were obtained for x  5 mol.% PbI2, for y  0.1 mol.% Pr2S3 and for z  0.15 mol.% Yb2S3. The glasses were stable and homogeneous, as confirmed by X-ray diffraction and electron microscopy, with high optical transmittivity from visible (red) region up to infrared region (900 cm−1). The density of the glasses was 3.26–3.33 gcm−3 for PbI2 containing glasses. The glass transition temperature, Tg, was 320–336 °C. The optical absorption bands in rare-earth doped glasses corresponded to 3H43F4, 3H43F3, 3H4–(3F2 + 3H6) f–f electron transitions of Pr3+ ions and to 2F7/22F5/2 f–f electron transitions of Yb3+ ions. Strong luminescence band with maximum near 1340 nm (electron transition 1G43H5) was found in Pr2S3 doped glasses. The intensity of this band was rising with doping by Yb3+ ions. The possible mechanism of the luminescence enhancement is suggested.  相似文献   

4.
《Journal of Non》2006,352(23-25):2380-2384
In Er:doped crystals, the 1.5-μm (4I13/24I15/2) transition is of negligibly small intensity. To intensify this transition, the (Gd,Y)3(Ga,Sc)5O12 host crystal has been chosen as a basic medium. The single crystal garnet films with thickness up to 18-μm were grown using the method of liquid-phase epitaxy on Gd3Ga5O12 substrates. The 20-at.% maximal concentration of Er3+-ions was achieved without luminescence quenching. The up-conversion processes were neutralized by the addition of an Fe-ions sensitizer. At the same level of absorbed pumping power, the luminescence intensity at the 1.5-μm band for the Er:Fe:doped crystal was approximately one to two orders of magnitude higher than that for traditional content. Heavily doped crystals demonstrated broadening of the luminescence band up to 300 nm.  相似文献   

5.
The density of the vacancy-type defect in Er doped GaN was measured by positron annihilation spectrometry (PAS) and the correlation between the intensity of the Er-related luminescence was studied. A luminescence peak at 558 nm originating from 4S3/2 to 4I15/2 transition of Er3+ was observed in Er-doped GaN. The intensity of the luminescence increased with increasing Er concentration and showed the maximum with the Er concentration of around 4.0 at%. The PAS measurements showed that the vacancy-type defect density increased with increasing Er concentration up to 4 at%, and around 4 at% of Er, the formation of defect complex such as VGaVN was suggested. The contribution of the defect to the radiative recombination of intra-4f transition of Er is discussed.  相似文献   

6.
The role of the composition and of the related changes of the structure in the formation of the surface of amorphous AsxSe1−x (0 < x < 0.5) layers before and after light treatment was investigated by direct measurements of the surface roughness at nanometer-scale and surface deformations at micrometer-scale under influence of illumination. It was established that the surface roughness of the films, deposited by vacuum thermal evaporation, decreased with increasing As content, especially in compositions 0.1  x  0.3, where the maximum light stimulated surface deformations (localized expansion) occurs. Both relate to the rigidity percolation range and the maximum photoplastic effects, which are not directly connected to the known photodarkening effect, since it is minimal for these compositions.  相似文献   

7.
Optical absorption, luminescence excitation and emission spectra of Er3+ centres in Ca3Ga2Ge3O12:Er glass with Er content of 1.46 wt% are presented and analysed. Luminescence kinetics for the main Er3+ transitions was satisfactorily described by single exponential decays with characteristic lifetimes. Oscillator strengths, phenomenological Judd–Ofelt intensity parameters, radiative decay rates (emission probabilities of transitions), branching ratios and radiative lifetimes for Er3+ centres in Ca3Ga2Ge3O12:Er glass are calculated and compared with the corresponding parameters of the Ca3Sc2Ge3O12:Er3+ garnet and other crystals and glasses. Quantum efficiency, η, of the 4I13/2  4I15/2 Er3+ transition is determined. Incorporation peculiarities and local structure of Er3+ luminescence centres in Ca3Ga2Ge3O12:Er3+ glass are discussed in comparison with garnet crystals and oxide glasses. On the basis of the presented results and referenced EXAFS data for Er, Eu and Ho impurities (L3-edge) it has been shown that Er3+ centres in Ca3Ga2Ge3O12 glass occupy network sites with the coordination number to oxygen of N = 6.  相似文献   

8.
Te80−xGe20Sex glasses have been prepared along the GeSe4–GeTe4 axis using the classical method in silica tube under vacuum. A phase separation domain appears for composition around Te40Ge20Se40. Our attention was turned toward the Te-rich compositions corresponding to 1 < x < 5 at.%. These glasses are transparent from 4 to about 20 μm without any purification of the starting elements. Furthermore the difference ΔT between the crystallization temperature Tx and the vitreous transition temperature Tg lies at about 110 °C that is to say 30 °C higher than for the GeTe4 reference glass. Finally the introduction of a few percentages of Se makes the glasses much easier to prepare and more stable against crystallization, making them drawable as optical fibers for example. Taking into account their transparency window, encompassing the CO2 absorption band around 15 μm, the Te80−xGe20Sex with 1 < x < 5 at.% could become matchless composition for the CO2 infrared detection as planed by the Darwin mission of the European Space Agency.  相似文献   

9.
《Journal of Non》2007,353(13-15):1330-1332
We have studied the absorption and photoluminescence (PL) of (GeS2)80(Ga2S3)20 glasses doped with 0.17, 0.35 and 1.05 at.% Er. The sharp bands centered at around 660, 810, 980 and 1540 nm in the absorption spectra can be associated with intra 4f-shell transitions in Er3+ ions from 4I15/2 level to 4F9/2, 4I9/2, 4I11/2 and 4I13/2 levels, respectively. It has been observed that the absorption edge shifts towards lower energies with increasing Er concentration. A decrease in the absorption coefficient in the range of weak absorption, as well as the host luminescence in more heavily doped samples has been established, which may be associated with less native defects in the glassy structure. The role of excitation wavelength (λex) on the PL emission band at 1540 nm using different Er3+-doping level has been evaluated. It has been found that the total PL band remains almost the same under direct excitation of Er3+ ions (at λex = 644, 770 and 982 nm), while it becomes narrower under the host excitation (at λex = 532 nm).  相似文献   

10.
The optical and structural properties of Ge20Se80, Ge25Se75 and Ge30Se70 bulk glasses and Agx(Ge0.20Se0.80)100−x thin films, where x = 0, 6, 11, 16, 20 and 23 at.% were studied. All samples were confirmed as amorphous according to XRD. The Raman spectra showed increase in 260 cm−1 and 237 cm−1 and decrease in 198 cm−1 and 216 cm−1 bands with different Se content in the bulk samples. The optical bandgap energy of bulk samples decreased (2.17–2.08 eV) and refractive index increased (2.389–2.426 at 1550 nm) with increasing Se content in bulk glasses. The Ge20Se80 thin films were prepared by vacuum thermal evaporation from Ge30Se70 bulk glasses. The Raman spectra of the films showed that peaks at 260 cm−1 and 216 cm−1 decreased their intensities with increasing Ag content in the thin films. The significant red shift of bandgap energy occurred upon different Ag content. The optically induced dissolution and diffusion resulted in graded refractive index profile along the film thickness caused by different Ag concentration. The refractive index increased from the substrate side to the top of thin films. The graded profile was getting more uniform with increasing content of silver in the thin film.  相似文献   

11.
New nanocomposite (NC) material on the base of thenoyltrifluoroacetone (TTA) coordinated with trivalent europium ions and structured with phenantroline (Eu(TTA)3Phen) and copolymer from styrene and butylmethacrylate (1:1) (SBMA) was prepared. The visible photoluminescence spectra of composites excited with N2-laser (λ = 0.337 μm) at room and T = 78 K temperatures were studied. For the Eu(TTA)3Phen/SBMA nanocomposite material emission bands located at 578, 590, 612, 675 and 705 nm can be attributed to the spin forbidden f–f transitions 5D0 → 7Fi (i = 0,1,2,3 and 4), respectively. The more intensive luminescence band situated at 612 nm with the half width of 3 nm is connected to the Eu3+ ion electronic transition 5D0 → 7F2. It was shown that the maximum intensity of photoluminescence occurs at the concentration of 15% of the Eu(TTA)3Phen in the SBMA polymer matrix.  相似文献   

12.
《Journal of Non》2006,352(26-27):2841-2845
Annealing effect on photoluminescence intensity of Er doped Al2O3–SiO2 prepared from Er doped boehmite (AlOOH) and GPS (3-glycidoxypropyltrimethoxysilane) hybrid was investigated. The emission intensities peaked at 1.54 μm, which correspond to the 4I13/2  4I15/2 transition of the Er3+ ion, are greatly increased by about 8 times between 900 and 1000 °C, than that expected from TGA associated with the elimination of hydroxyl groups which is responsible for the fluorescence quenching. The residual hydroxyl groups for Er doped Al2O3–SiO2 after annealing at high temperature was further analyzed by FT-IR. Finally, fluorescence intensities were compared with the variation of BET surface areas against the annealing temperature. It was found that photoluminescence intensity below 1000 °C was more dependent on surface hydroxyl groups re-adsorbed by a high specific surface area rather than internal hydroxyl groups remained in gel film.  相似文献   

13.
K. Ramesh   《Journal of Non》2009,355(37-42):2045-2049
In Ge–As–Te system, the glass forming region determined by normal melt quenching method has two regions (GFR I and GFR II) separated by few compositions gap. With a simple laboratory built twin roller apparatus, we have succeeded in preparing Ge7.5AsxTe92.5−x glasses over extended composition ranges. A distinct change in Tg is observed at x = 40, exactly at which the separation of the glass forming regions occur indicating the changes in the connectivity and the rigidity of the structural network. The maximum observed in glass transition (Tg) at x = 55 corresponding to the average coordination number (Zav) = 2.70 is an evidence for the shift of the rigidity percolation threshold (RPT) from Zav = 2.40 as predicted by the recent theories. The glass forming tendency (Kgl) and ΔT (=TcTg) is low for the glasses in the GFR I and high for the glasses in the GFR II.  相似文献   

14.
《Journal of Non》2007,353(13-15):1364-1371
The optical properties of GeGaSe glasses doped with Er by the addition of Er2S3 have been investigated. Optically uniform glasses have been prepared using stoichiometric compositions with 9–12 at.% Ga and doped with 0.5–2 at.% Er. The radiative lifetime of the 4I13/2  4I15/2 transition has been estimated to be equal to 1.78 ms using the Judd–Ofelt analysis. The photoluminescence lifetime distribution has been investigated in optimized glasses using Quadrature Frequency-Resolved Spectroscopy at room and liquid helium temperatures and at different emission wavelengths. All lifetime distributions were found to be sharp peaks centered at ∼2 ms. A radiation diffusion model has been used to understand the discrepancy between measured photoluminescence spectra and those predicted by the McCumber theory. The model predicts a radiative lifetime of the 4I13/2  4I15/2 transition to be around 1.72 ms and a much longer non-radiative lifetime. These results assume quasi-uniform distribution of Er3+ ions with negligible concentration-self-quenching and negligible rate of non-radiative relaxation from 4I13/2 to 4I15/2.  相似文献   

15.
Bi–Er–Tm co-doped germanate glasses and Bi, Er, Tm singly doped glasses were prepared and characterized through absorption spectra, NIR emission spectra and decay lifetime. A super broadband near-infrared emission from 1000 nm to 1600 nm, covering the whole O, E, S, C, and L bands, was observed in the Bi–Er–Tm co-doped samples due to the result of the overlapping of the Bi related emission band (centered at 1300 nm), the emission from Er3+ 4I13/2  4I15/2 transition (centered at 1534 nm) as well as the emission from Tm3+ 3H4  3F4 transition (centered at 1440 nm), which is essential for broadly tunable laser sources and broadband optical amplifiers. The energy transfer process was also discussed at the end of the paper.  相似文献   

16.
The Er3+ doped transparent oxyfluoride glass ceramics were obtained by appropriate heat treatment of the precursor glasses with composition (mol%) 50SiO2-xPbF2-(50 − x)PbO-0.5ErF3. The microstructure and optical properties of the glasses and glass ceramics were determined by differential scanning calorimetry (DSC), X-ray diffraction (XRD), absorption spectra and luminescence spectra. The intensity of upconversion luminescence significantly increased in glass ceramics compared to that in precursor glass. The emission bands centered around 660 nm (4F9/2 → 4I15/2) and 410 nm (2H9/2 → 4I15/2) were simultaneously observed in glass ceramics but cannot be seen in the corresponding precursor glass. The influence of different PbF2 content on the microstructure and upconversion luminescence of the samples was analyzed in detail. The results indicated that with the increase of PbF2 content, the Ω2 was almost the same and the ratios of red to green upconversion luminescence decreased in glass ceramics.  相似文献   

17.
We report a structural investigation of bulk Ge-rich Ge–S–AgI chalcohalide glasses. A vibrational spectroscopic study of the quaternary system (AgI)x (GeS1.5)100−x (0  xAgI  20) has been undertaken using infrared spectroscopy and Fourier transform Raman scattering. It was found that the GeS1.5 Raman spectrum is compatible with a glass structure composed of corner- and edge-sharing mixed GeSnGe4−n (n = 0–4) tetrahedra where units with n = 2–4 dominate, whilst the fraction of corner-sharing units are significantly lower than the corresponding fraction in the stoichiometric GeS2 glass. The addition of AgI has revealed a subtle but systematic effect in the structure of the Ge-rich glass matrix, manifested by mild decrease of the ES units and the concomitant increase of complex GeSnI4−n or GeSnGemI4-nm tetrahedra whose vibrational modes form a continuum at low frequencies. Although, AgI seems to cause subtle structural changes due to the formation of Ge–I bonds, it is also evident that AgI does not act as a real modifier that would depolymerize appreciably the Ge–S network structure.  相似文献   

18.
Chalcogenide glasses (ChG) have proven to be promissory materials for their application as sensitive membranes in ion-selective electrodes (ISE’s), which are used in electrochemical sensors in order to detect heavy metal ions in solutions. AgGeSe system is not an exception. ChG system Agx(Ge0.25Se0.75)100−x with x between 10 and 25 at.% was investigated as membrane material in ion-selective electrodes. This system has shown sensitivity to the presence of Cu2+ and Fe3+ ions. The introduction of Cu or Fe to the ChG composition was made in order to explore the role of metal addition on selectivity towards Cu2+ or Fe3+ ions. The analytical properties such as reproducibility, linear range, sensitivity, detection limit and working pH range were studied and its dependence on the ChG composition was analyzed for the three systems. The cross-selectivity of some interfering ions was investigated.  相似文献   

19.
This paper deals with Pr‐doped and Pr, Si‐codoped YAlO3 single crystal growth by the micro‐pulling‐down method and investigation of their spectroscopic and scintillating properties. The Pr3+ 5d ‐4f radioluminescence intensity is more than 10 times higher than that of Bi4Ge3O12 standard sample, but the Si‐codoping decreases it. Absorption spectra of as‐grown and air‐annealed Si,Pr‐codoped YAlO3 samples show along with an onset of 4f ‐5d transition round 230 nm the induced absorption band at 400 nm which possibly related to a hole center absorption (Pr4+ or O). Thermoluminescence measurements above the room temperature were performed in order to monitor deep electron traps. Strong concentration dependence of thermoluminescence was observed for Pr:YAlO3 glow curves. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
Europium-doped NaY(PO3)4 single crystals have been synthesized by the flux method with sizes around 1 mm3. The unit cell parameters at room temperature refined by X-ray powder diffraction are a=7.1510(4) Å; b=13.0070(8) Å; c=9.6973(2) Å; β=90.606(3)°, Z=4 with the space group P21/n in monoclinic system. The present single crystals have a needle shape, they are elongated along the a crystallographic direction, and their size is in the 500 μm–1 mm range. The linear thermal expansion tensor parameters were determined, being the maximum value along the b direction, 16.1×10−6 K−1 and the minimum along the a direction being 11.7×10−6 K−1. The IR vibration modes attributed to the group P–O are consistent with the crystallographic data concerning the chain aspect of the phosphate anion. This material melts incongruently at 1141 K. Intense visible emissions attributed to Eu3+ 5D07F1, 5D07F2 and 5D07F4, electronic transitions have been observed after pumping at 355 nm at room temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号