首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Let Δ n,d (resp. Δ′ n,d ) be the simplicial complex and the facet ideal I n,d = (x 1... x d, x d?k+1... x 2d?k ,..., x n?d+1... x n ) (resp. J n,d = (x 1... x d , x d?k+1... x 2d?k ,..., x n?2d+2k+1... x n?d+2k , x n?d+k+1... x n x 1... x k)). When d ≥ 2k + 1, we give the exact formulas to compute the depth and Stanley depth of quotient rings S/J n,d and S/I n,d t for all t ≥ 1. When d = 2k, we compute the depth and Stanley depth of quotient rings S/Jn,d and S/I n,d , and give lower bounds for the depth and Stanley depth of quotient rings S/I n,d t for all t ≥ 1.  相似文献   

2.
Let #K be a number of integer lattice points contained in a set K. In this paper we prove that for each d ∈ N there exists a constant C(d) depending on d only, such that for any origin-symmetric convex body K ? R d containing d linearly independent lattice points
$$\# K \leqslant C\left( d \right)\max \left( {\# \left( {K \cap H} \right)} \right)vo{l_d}{\left( K \right)^{\frac{{d - m}}{d}}},$$
where the maximum is taken over all m-dimensional subspaces of R d . We also prove that C(d) can be chosen asymptotically of order O(1) d d d?m . In particular, we have order O(1) d for hyperplane slices. Additionally, we show that if K is an unconditional convex body then C(d) can be chosen asymptotically of order O(d) d?m .
  相似文献   

3.
Define T(d, r) = (d + 1)(r - 1) + 1. A well known theorem of Tverberg states that if nT(d, r), then one can partition any set of n points in Rd into r pairwise disjoint subsets whose convex hulls have a common point. The numbers T(d, r) are known as Tverberg numbers. Reay added another parameter k (2 ≤ kr) and asked: what is the smallest number n, such that every set of n points in Rd admits an r-partition, in such a way that each k of the convex hulls of the r parts meet. Call this number T(d, r, k). Reay conjectured that T(d, r, k) = T(d, r) for all d, r and k. In this paper we prove Reay’s conjecture in the following cases: when k ≥ [d+3/2], and also when d < rk/r-k - 1. The conjecture also holds for the specific values d = 3, r = 4, k = 2 and d = 5, r = 3, k = 2.  相似文献   

4.
The Hausdorff dimension of the graphs of the functions in Hölder and Besov spaces (in this case with integrability p≥1) on fractal d-sets is studied. Denoting by s∈(0,1] the smoothness parameter, the sharp upper bound min{d+1?s,d/s} is obtained. In particular, when passing from ds to d<s there is a change of behaviour from d+1?s to d/s which implies that even highly nonsmooth functions defined on cubes in ? n have not so rough graphs when restricted to, say, rarefied fractals.  相似文献   

5.
Let L=?Δ+V be a Schrödinger operator on ? d , d≥3. We assume that V is a nonnegative, compactly supported potential that belongs to L p (? d ), for some p>d /2. Let K t be the semigroup generated by ?L. We say that an L 1(? d )-function f belongs to the Hardy space \(H^{1}_{L}\) associated with L if sup?t>0|K t f| belongs to L 1(? d ). We prove that \(f\in H^{1}_{L}\) if and only if R j fL 1(? d ) for j=1,…,d, where R j =(?/? x j )L ?1/2 are the Riesz transforms associated with L.  相似文献   

6.
For a real square matrix A and an integer d ? 0, let A (d) denote the matrix formed from A by rounding off all its coefficients to d decimal places. The main problem handled in this paper is the following: assuming that A (d) has some property, under what additional condition(s) can we be sure that the original matrix A possesses the same property? Three properties are investigated: nonsingularity, positive definiteness, and positive invertibility. In all three cases it is shown that there exists a real number α(d), computed solely from A (d) (not from A), such that the following alternative holdsif d > α(d), then nonsingularity (positive definiteness, positive invertibility) of A (d) implies the same property for A if d < α(d) and A (d) is nonsingular (positive definite, positive invertible), then there exists a matrix A′ with A(d) = A (d) which does not have the respective property.For nonsingularity and positive definiteness the formula for α(d) is the same and involves computation of the NP-hard norm ‖ · ‖∞,1; for positive invertibility α(d) is given by an easily computable formula.  相似文献   

7.
Let V be a vector space over a field k, P : Vk, d ≥?3. We show the existence of a function C(r, d) such that rank(P) ≤ C(r, d) for any field k, char(k) > d, a finite-dimensional k-vector space V and a polynomial P : Vk of degree d such that rank(?P/?t) ≤ r for all tV ??0. Our proof of this theorem is based on the application of results on Gowers norms for finite fields k. We don’t know a direct proof even in the case when k = ?.  相似文献   

8.
Let f: {-1, 1}n → [-1, 1] have degree d as a multilinear polynomial. It is well-known that the total influence of f is at most d. Aaronson and Ambainis asked whether the total L1 influence of f can also be bounded as a function of d. Ba?kurs and Bavarian answered this question in the affirmative, providing a bound of O(d3) for general functions and O(d2) for homogeneous functions. We improve on their results by providing a bound of d2 for general functions and O(d log d) for homogeneous functions. In addition, we prove a bound of d/(2p) + o(d) for monotone functions, and provide a matching example.  相似文献   

9.
An (a, d)-edge-antimagic total labeling of a graph G is a bijection f from V(G) ∪ E(G) onto {1, 2,…,|V(G)| + |E(G)|} with the property that the edge-weight set {f(x) + f(xy) + f(y) | xyE(G)} is equal to {a, a + d, a + 2d,...,a + (|E(G)| ? 1)d} for two integers a > 0 and d ? 0. An (a, d)-edge-antimagic total labeling is called super if the smallest possible labels appear on the vertices. In this paper, we completely settle the problem of the super (a, d)-edge-antimagic total labeling of the complete bipartite graph Km,n and obtain the following results: the graph Km,n has a super (a, d)-edge-antimagic total labeling if and only if either (i) m = 1, n = 1, and d ? 0, or (ii) m = 1, n ? 2 (or n = 1 and m ? 2), and d ∈ {0, 1, 2}, or (iii) m = 1, n = 2 (or n = 1 and m = 2), and d = 3, or (iv) m, n ? 2, and d = 1.  相似文献   

10.
Let G = (V,A) be a digraph and k ≥ 1 an integer. For u, vV, we say that the vertex u distance k-dominate v if the distance from u to v at most k. A set D of vertices in G is a distance k-dominating set if each vertex of V D is distance k-dominated by some vertex of D. The distance k-domination number of G, denoted by γ k (G), is the minimum cardinality of a distance k-dominating set of G. Generalized de Bruijn digraphs G B (n, d) and generalized Kautz digraphs G K (n, d) are good candidates for interconnection networks. Denote Δ k := (∑ j=0 k d j )?1. F. Tian and J. Xu showed that ?nΔ k ? γ k (G B (n, d)) ≤?n/d k? and ?nΔ k ? ≤ γ k (G K (n, d)) ≤ ?n/d k ?. In this paper, we prove that every generalized de Bruijn digraph G B (n, d) has the distance k-domination number ?nΔ k ? or ?nΔ k ?+1, and the distance k-domination number of every generalized Kautz digraph G K (n, d) bounded above by ?n/(d k?1+d k )?. Additionally, we present various sufficient conditions for γ k (G B (n, d)) = ?nΔ k ? and γ k (G K (n, d)) = ?nΔ k ?.  相似文献   

11.
Denote 〈x|d n = x(x + d)(x + 2d) · · · (x + (n - 1)d) for n = 1, 2, · · ·, and 〈x|d0 = 1, where 〈x|d n is called the generalized factorial of x with increment d. In this paper, we present the evaluation of Hankel determinants of sequence of generalized factorials. The main tool used for the evaluation is the method based on exponential Riordan arrays. Furthermore, we provide Hankel determinant evaluations of the Eulerian polynomials and exponential polynomials.  相似文献   

12.
Let (X, d) be a compact metric space and µ a Borel probability on X. For each N ≥ 1 let dN be the ?-product on XN of copies of d, and consider 1-Lipschitz functions XN → ? for dN.  相似文献   

13.
Given n and d, we describe the structure of trees with the maximal possible number of greatest independent sets in the class of n-vertex trees of vertex degree at most d.We show that the extremal tree is unique for all even n but uniqueness may fail for odd n; moreover, for d = 3 and every odd n ≥ 7, there are exactly ?(n ? 3)/4? + 1 extremal trees. In the paper, the problem of searching for extremal (n, d)-trees is also considered for the 2-caterpillars; i.e., the trees in which every vertex lies at distance at most 2 from some simple path. Given n and d ∈ {3, 4}, we completely reveal all extremal 2-caterpillars on n vertices each of which has degree at most d.  相似文献   

14.
We consider centered conditionally Gaussian d-dimensional vectors X with random covariance matrix Ξ having an arbitrary probability distribution law on the set of nonnegative definite symmetric d × d matrices M d +. The paper deals with the evaluation problem of mean values \( E\left[ {\prod\nolimits_{i = 1}^{2n} {\left( {{c_i},X} \right)} } \right] \) for c i ∈ ? d , i = 1, …, 2n, extending the Wick theorem for a wide class of non-Gaussian distributions. We discuss in more detail the cases where the probability law ?(Ξ) is infinitely divisible, the Wishart distribution, or the inverse Wishart distribution. An example with Ξ \( = \sum\nolimits_{j = 1}^m {{Z_j}{\sum_j}} \), where random variables Z j , j = 1, …, m, are nonnegative, and Σ j M d +, j = 1, …, m, are fixed, includes recent results from Vignat and Bhatnagar, 2008.  相似文献   

15.
Given any integers a, b, c, and d with a > 1, c ≥ 0, ba + c, and db + c, the notion of (a, b, c, d)-Koszul algebra is introduced, which is another class of standard graded algebras with “nonpure” resolutions, and includes many Artin-Schelter regular algebras of low global dimension as specific examples. Some basic properties of (a, b, c, d)-Koszul algebras/modules are given, and several criteria for a standard graded algebra to be (a, b, c, d)-Koszul are provided.  相似文献   

16.
It is well-known that the rings Od of algebraic integers in \(\mathbb{Q}(\sqrt { - d} )\) for d = 19, 43, 67, and 163 are principal ideal domains but not Euclidean. In this article we shall provide a method, based on a result of P. M. Cohn, to construct explicitly pairs (b, a) of integers in Od for d = 19, 43, 67, and 163 such that, in Od, there exists no terminating division chain of finite length starting from the pairs (b, a). That is, a greatest common divisor of the pairs (b, a) exists in Od but it can not be obtained by applying a terminating division chain of finite length starting from (b, a). Furthermore, for squarefree positive integer d ? {1, 2, 3, 7, 11, 19, 43, 67, 163}, we shall also construct pairs (b, a) of integers in Od which generate Od but have no terminating division chain of finite length. It is of interest to note that our construction provides a short alternative proof of a theorem of Cohn which is related to the concept of GE2-rings.  相似文献   

17.
Let B(H) be the algebra of all bounded linear operators on a complex Hilbert space H and A(H) ? B(H) be a standard operator algebra which is closed under the adjoint operation. Let F: A(H)→ B(H) be a linear mapping satisfying F(AA*A) = F(A)A*A + Ad(A*)A + AA*d(A) for all AA(H), where the associated linear mapping d: A(H) → B(H) satisfies the relation d(AA*A) = d(A)A*A + Ad(A*)A + AA*d(A) for all AA(H). Then F is of the form F(A) = SA ? AT for all AA(H) and some S, TB(H), that is, F is a generalized derivation. We also prove some results concerning centralizers on A(H) and semisimple H*-algebras.  相似文献   

18.
Let f(n) be the largest integer such that every poset on n elements has a 2-dimensional subposet on f(n) elements. What is the asymptotics of f(n)? It is easy to see that f(n) = n 1/2. We improve the best known upper bound and show f(n) = O (n 2/3). For higher dimensions, we show \(f_{d}(n)=\O \left (n^{\frac {d}{d + 1}}\right )\), where f d (n) is the largest integer such that every poset on n elements has a d-dimensional subposet on f d (n) elements.  相似文献   

19.
Let f:M~d→M~d(d≥2) be a diffeomorphism on a compact C~∞ manifold on M.If a diffeomorphism f belongs to the C~1-interior of the set of all diffeomorphisms having the barycenter property,then f is Ω-stable.Moreover,if a generic diffeomorphism f has the barycenter property,then f is Ω-stable.We also apply our results to volume preserving diffeomorphisms.  相似文献   

20.
We give a simplified proof of the following fact: for all nonnegative integers n and d the monomial y n d forms a differential standard basis of the ideal [y n d ]. In contrast to Levi’s combinatorial proof, in this proof we use the Gröbner bases technique. Under some assumptions we prove the converse result: if an isobaric polynomial f forms a differential standard basis of [f], then f = y n d .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号