首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
杨军校 《高分子科学》2010,28(6):877-885
<正>A benzocyclobuten-4-yl acrylate(1) monomer was prepared by esterification of 4-hydroxybenzocyclobutene with acryloyl chloride.The radical homopolymerization of 1 and copolymerization of 1 with styrene or n-butyl acrylate were carried out to produce linear polymers 2a,2b and 2c.Heating of these linear polymers under thermal initiation gave corresponding cross-linked polymers 3a,3b and 3c.The ring-opening reaction in the cross-linking process was confirmed by on-line infrared spectra.Differential scanning calorimetry showed that the glass transition temperatures of linear polymers 2a and 2b were 83.2℃and 68.1℃,respectively.Thermogravimetric analysis of the cross-linked polymers showed that they all exhibited good thermal stability.  相似文献   

2.
周其凤等曾报道聚丙烯酸[2,5-双(对甲氧基苯甲酰氧基)节酯][1]和聚甲基丙烯酸[2,5-双(对甲氧基苯甲酰氧基)苄酯][2]的合成.但后来的研究发现,在合成单体的条件下出现的一种未见报道的异常反应[3]使产物成分复杂化,因此当时报道的聚合物可能不是聚丙烯酸[2,5-双-(对甲氧基苯甲酰氧基)苄酯]或聚甲基丙烯酸[2,5-双(对甲氧基苯甲酰氧基)苄酯],而可能是共聚物.针对这一问题,我们重新设计了合成路线以避免发生上述副反应,成功地合成了丙烯酸或a-甲基丙烯酸[2,5-双-(对甲氧基苯甲酰氧基…  相似文献   

3.
Polymers that have crown ether groups as cation binding sites and cinnamic acid ester groups as photodimerizable groups were prepared by the cationic polymerizations of 2-vinyloxyethyl 4′-(2,3-benzo-1,4,7,10,13-pentaoxa-2-cyclopentadecene)acrylate and 2-vinyloxyethyl 4′-(2,3-benzo-1,4,7,10,13,16-hexaoxa-2-cyclooctadecene)acrylate. When irradiated with ultraviolet (UV) light the cinnamic acid ester groups of the polymers caused dimerization in dilute solution without the formation of insoluble materials. The irradiation was carried out in a dioxane solution and an aqueous solution in the presence and absence of salts. The effect of phototransformation of polymers on the cation binding properties was investigated by a method of picrate salts extraction. The binding ability of the phototransformed polymers for alkali and alkaline earth metal cations was higher than that of the native polymer. Furthermore the cation binding ability of the phototransformed polymers was less sensitive to temperature than that of the native polymer. The effect of the degree of photodimerization of the polymers and the concentration of KCl that exists during irradiation on the cation binding ability was also investigated.  相似文献   

4.
The title block copolymer (defined as PSUEA) containing pendant,self-complementary quadruple hydrogen bonding sites has been prepared successfully by three steps.First,poly(styrene-b-2-hydroxyethyl acrylate) (defined as PSHEA) was prepared by living radical polymerizing 2-hydroxyethyl acrylate (HEA) initiated by polystyrene (PSt) macro- initiator,which was prepared via nitroxide-mediated polymerization (NMP) technique.After treated by excessive 3-isocyanatomethyl-3,5,5-trimethylcyclohexyl isocyanate (IPD...  相似文献   

5.
3‐Hydroxypropyl acrylate, 4‐hydroxybutyl acrylate, 2‐methyl‐3‐hydroxypropyl acrylate, 2‐hydroxypropyl acrylate, neopentyl glycol acrylate, glyceryl acrylate, and dihydroxyhexyl acrylate were prepared via transacylation reaction of methyl acrylate with diols and triols catalyzed by Candida antarctica lipase B. After removal of the enzyme by filtration and the methyl acrylate by distillation, the monomers were polymerized via free radical polymerization (FRP) with azobisisobutyronitrile as initiator and nitroxide mediated polymerization (NMP) employing Blocbuilder? alkoxyamine initiator and SG‐1 free nitroxide resulting in hydroxy functional poly(acrylates). The NMP kinetics are discussed in detail. In addition, the polymers obtained by FRP and NMP are compared and the results are related to the amount of bisacrylates that are present in the initial monomer mixtures resulting from the transacylation reactions. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2610–2621, 2010  相似文献   

6.
刘晓君  陈国华 《应用化学》2013,30(4):373-377
3-硝基-4-氯苯甲酸(2)经甲胺化得3-硝基-4-甲氨基苯甲酸(3),2-氨基吡啶与丙烯酸乙酯经迈克尔加成得3-[(吡啶-2-基)氨基]丙酸乙酯(5),化合物3与5经缩合、催化氢化得3-{[(3-氨基-4-甲胺基)苯甲酰基](吡啶-2-基)氨基}丙酸乙酯(7),化合物7再与N-(4-氰基苯基)甘氨酸(8)酰化、环合和Pinner反应,最后与氯甲酸正己酯反应得到达比加群酯(1),总收率约40%(以3-硝基-4-氯苯甲酸计),结构经IR、1H NMR和MS测试技术确证。  相似文献   

7.
Allyl acrylate and allyl methacrylate were polymerized by anionic initiators to soluble linear polymers containing allyl groups in the pendant side chains. The pendant unpolymerized allyl groups of the resulting linear poly(allyl acrylates) were shown to be present by: (1) the disappearance of the acrylyl and methacrylyl double bond absorptions in the infrared spectra in the conversions of monomers to polymers; (2) postbromination of the allyl bonds in the linear polymer; (3) the disappearance of the allyl groups absorptions in the infrared spectra of the brominated linear polymers; and (4) the thermal- and radical-initiated crosslinking of the linear polymers through the allyl groups. Allyl acrylate and allyl methacrylate show great reluctance to copolymerize with styrene under anionic initiation, but copolymerize readily with methyl methacrylate and acrylonitrile. Block copolymers were prepared by reacting allyl methacrylate with preformed polystyrene and poly(methyl methacrylate) anions. The linear polymers and copolymers of allyl acrylate may be classified as “self-reactive” polymers which yield thermosetting polymers. Bromination of the linear polymers offers a convenient method of producing self-extinguishing polymers.  相似文献   

8.
Biotinylated polymers with side‐chain aldehydes were prepared for use as multifunctional scaffolds. Two different biotin‐containing chain transfer agents (CTAs) and an aldehyde‐containing monomer, 6‐oxohexyl acrylate (6OHA), are synthesized. Poly(ethylene glycol) methyl ether acrylate (PEGA) and 6OHA are copolymerized by reversible addition‐fragmentation chain transfer (RAFT) polymerization in the presence of the biotinylated CTAs. The resulting polymers are analyzed by GPC and1H NMR spectroscopy. The polymer end groups contained a disulfide bond, which could be readily reduced in solution to remove the biotin. Reactivity of the aldehyde side chains is demonstrated by oxime and hydrazone formation at the polymer side chains, and conjugate formation of fluorescently labeled polymers with streptavidin is investigated by gel electrophoresis.

  相似文献   


9.
Vinylidene chloride polymers containing comonomer units capable of consuming evolved hydrogen chloride to expose good radical-scavenging sites might be expected to display greater thermal stability than similar polymers containing simple alkyl acrylates as comonomer. Incorporation of a comonomer containing the phenyl t-butyl carbonate moiety into a vinylidene chloride polymer has the potential to afford a polymer with pendant groups which might interact with hydrogen chloride to expose phenolic groups. Copolymers of vinylidene chloride with [4-(t-butoxycarbonyloxy)phenyl]methyl acrylate have been prepared, characterized, and subjected to thermal degradation. The degradation has been characterized by thermal and spectroscopic techniques. The degradation of vinylidene chloride/[4-(t-butoxycarbonyloxy)phenyl]methyl acrylate copolymers is much more facile than the same process for similar copolymers containing either [4-(isobutoxycarbonyloxy)phenyl]methyl acrylate or methyl acrylate, a simple alkyl acrylate, as comonomer. During copolymer degradation, [4-(t-butoxycarbonyloxy) phenylmethyl acrylate units are apparently converted to acrylic acid units by extensive fragmentation of the sidechain. Thus, the phenyl t-butyl carbonate moiety does function as a labile acid-sensitive pendant group but its decomposition in this instance leads to the generation of a phenoxybenzyl carboxylate capable of further fragmentation.  相似文献   

10.
Water‐in‐oil high‐internal‐phase emulsions (HIPEs), containing 4‐nitrophenyl acrylate and 2,4,6‐trichlorophenyl acrylate as reactive monomers, were prepared and polymerized, and highly porous monolithic materials resulted. The novel materials were studied by combustion analysis, Fourier transform infrared spectroscopy scanning electron microscopy, mercury porosimetry, and N2 adsorption/desorption analysis. With both esters, cellular macroporous monolithic polymers were obtained; the use of 4‐nitrophenyl acrylate resulted in a cellular material with void diameters between 3 and 7 μm and approximately 3‐μm interconnects, whereas the use of 2,4,6‐trichlorophenyl acrylate yielded a foam with void diameters between 2 and 5 μm, most interconnects being around 1 μm. The resulting monoliths proved to be very reactive toward nucleophiles, and possibilities of functionalizing the novel polymer supports were demonstrated via reactions with amines bearing additional functional groups and via the synthesis of an acid chloride derivative. Tris(hydroxymethyl)aminomethane and tris(2‐aminoethyl)amine derivatives were obtained. The hydrolysis of 4‐nitrophenylacrylate removed the nitrophenyl group, yielding a monolithic acrylic acid polymer. Furthermore, functionalization to immobilized acid chloride was performed very efficiently, with more than 95% of the acid groups reacting. The measurement of the nitrogen content in 4‐nitrophenyl acrylate poly(HIPE)s after various times of hydrolysis showed the influence of the total pore volume of the monolithic polymers on the velocity of the reaction, which was faster with the more porous polymer. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 296–303, 2005  相似文献   

11.
Guofeng Wang 《Liquid crystals》2013,40(9):1280-1289
The star-shaped POSS-graft-LCP with POSS as the core and liquid crystal polymer, poly{6-(4?-octyloxyphenyl-4″-benzoyl)hexyl acrylate}, as arms was prepared by atom transfer radical polymerisation technique using octa(3-chloropropyl) polyhedral oligomeric silsesquioxane [POSS-(CH2CH2CH2Cl)8] as initiator. For comparison, the linear liquid crystal polymer, poly{6-(4?-octyloxyphenyl-4″-benzoyl)hexyl acrylate} (LLCP), was obtained by conventional radical polymerisation. Both liquid crystal polymers were characterised by FT-IR, 1H NMR, 13C NMR, gel permeation chromatography, thermogravimetric analysis, differential scanning calorimetry, polarised optical microscopy and X-ray diffraction analysis. The liquid crystal phase behaviour research demonstrated that both liquid crystal polymers were reversible thermotropic nematic liquid crystal materials. The number of polymerisation degree of every arm attached on POSS in POSS-graft-LCP impacted greatly on the liquid crystal properties and only a small one was necessary for it to exhibit a broad liquid crystal range. Results further demonstrated that the special star-shaped topology of POSS and the eight arms attached helped POSS-graft-LCP form and stabilise liquid crystal phase easily. This research may further expand the way to star-shaped LCPs by employing a variety of (meth)acrylate and other vinyl liquid crystalline monomers.  相似文献   

12.
Methods of synthesis of trifluoromethylfuryl derivatives of phosphonocarboxylic acids are studied. By addition of diethyl hydrogen phosphite to alkyl 3-(5-trifluoromethylfur-2-yl)acrylate under the conditions of the Pudovik reaction the corresponding derivative of 3-phosphonopropionic acid was prepared. Diethyl (5-trifluoromethylfur-2-yl)methanephosphonate in presence of potassium tert-butylate reacts with ethyl acrylate to form trifluoromethylfuryl derivative of 4-phosphonobutyric or 4-phosphonopimelic acid depending on the reaction conditions. In the products of reaction of the alkyl 3-(5-trifluoromethylfur-2-yl)-3-(diethoxyphosphoryl) propionate with ethyl acrylate in the presence of potassium tert-butylate formation of trifluoromethylfuryl derivative of the 3-phosphonoadipic acid is detected. 3-(5-Trifluoromethylfur-2-yl)-3-(diethoxyphosphoryl) propionic acid and its acid chloride are synthesized. The latter compound is used for acylation of glycine to form the corresponding N-acyl derivative. It is suggested that such compounds may be transported in the cell using usual channels of transportation of the amino acids and short peptides.  相似文献   

13.
The synthesis of methacrylate esters of 4-cyanophenyl-(4-(ω-hydroxyalkyloxy)) cinnamates, with spacer lengths of 2 and 6 methylene units and the synthesis of the corresponding acrylate ester with a spacer of 2 methylene units are described. The methacrylate monomers were polymerized by free radical polymerization, both as homopolymers and as copolymers with the analogous benzoate monomer of spacer length 6. The acrylate ester could not be polymerized successfully under the same reaction conditions. Polymers were characterized by NMR spectroscopy, gel permeation chromatography, differential scanning calorimetry, and thermo-optic observations. Of the monomers prepared, only the cinnamate with a hexamethylene spacer shows a mesophase, seen on supercooling of the melt. All of the polymers prepared were liquid crystalline, with smectic behavior predominating in the polymethacrylates with the longer spacer group. A narrow nematic region is seen just below the clearing temperature with a range of 3–9°C, nematic character is increased in the copolymer series with the degree of incorporation of the cinnamate monomer with the spacer group of length 2.  相似文献   

14.
The advancement of the information age has intensified the focus on photosensitive materials for information storage devices. To develop new photosensitive two azobenzene side-chain polymers i.e., poly(E)-3-(4-((4-nitrophenyl)diazenyl)phenoxy)propyl acrylate (polymer-1) and poly(E)-3-(4-((2-methoxy-4-nitrophenyl)diazenyl)phenoxy)propyl acrylate (polymer-2), were developed, and their diffraction efficiency was evaluated. The impact of ionic liquids (ILs) on the diffraction efficiency was evaluated by combining the polymers with imidazolium and ammonium families of ILs such as 1-butyl-3-methylimidazolium bromide [Bmim]Br, 1-ethyl-3-methyl-imidazolium-bromide [Emim]Br (imidazolium ILs), and triethylammonium methanesulfonate [TMEAS] (ammonium IL). The molecular interaction of both azobenzene side-chain polymers with the ILs was evaluated before the diffraction efficiency studies by employing UV–vis, FT-IR, and confocal Raman spectroscopies. The spectroscopic studies revealed the interaction of the polymers with the imidazolium and ammonium ILs. The mean diffraction efficiency of polymers-1 and ?2 were ~0.05 and ~0.022%, respectively. After the addition of the ILs, the diffraction efficiency increased. The highest diffraction efficiency was achieved with the polymer-2 + [Emim]Br system of 3.5% and polymer-2 + TEMS combination of 4.03%. Therefore, although the diffraction efficiency of polymer-1 was higher than that of polymer-2, after adding the ILs, the diffraction efficiency of polymer-2 surpassed that of the polymer-1 + ILs system.  相似文献   

15.
Well-defined star polymers containing a functionalized core supply a molecular nanocavity and may be used to control formation of inorganic nanoparticles. Herein, platinum (Pt) nanoparticles of 2-4 nm were prepared by using (poly(acrylic acid)-b-polystyrene)6 (PAA-b-PS)6 amphiphilic star block copolymer as a novel single molecular stabilizer. This PAA core functionalized star polymer was obtained by hydrolysis of (poly(tert-butyl acrylate)-b-polystyrene)6 (PtBA-b-PS)6, which was synthesized by sequential atom transfer radical polymerization (ATRP) of tert-butyl acrylate and styrene with an initiator bearing six 2-bromoisobutyloxyl groups. Pt(IV) ions were loaded by ion exchange to the core of the star polymer and Pt nanoparticle stabilized by single star polymer was produced by a reduction with NaBH4.  相似文献   

16.
The synthesis of a series of liquid crystalline side-chain polyacrylates with oligoether spacers and 1-(4-benzoyloxyphenyl)-2-(4 -cyanophenyl)ethane mesogenic moiety is reported. Polymers were prepared by radical polymerization of the corresponding acrylate monomers. The liquid crystalline nature of these polymers was established by calorimetric measurements, optical texture observations and X-ray investigations. For the polymer with the diethylene oxide spacer (EO dimer), the unusual I-N-SAd-Nre sequence was observed. For the polymer with the trimer spacer, only “fluid” smectic phases were evidenced.  相似文献   

17.
The polymers poly[(2,2‐dimethyl‐1,3‐dioxolane‐4yl) methyl acrylate] (PDMDMA) and four‐armed PDMDMA with well‐defined structures were prepared by the polymerization of (2,2‐dimethyl‐1,3‐dioxolane‐4yl) methyl acrylate (DMDMA) in the presence of an atom transfer radical polymerization (ATRP) initiator system. The successive hydrolyses of the polymers obtained produced the corresponding water‐soluble polymers poly(2,3‐dihydroxypropyl acrylate) (PDHPA) and four‐armed PDHPA. The controllable features for the ATRP of DMDMA were studied with kinetic measurements, gel permeation chromatography (GPC), and NMR data. With the macroinitiators PDMDMA–Br and four‐armed PDMDMA–Br in combination with CuBr and 2,2′‐bipyridine, the block polymerizations of methyl acrylate (MA) with PDMDMA were carried out to afford the AB diblock copolymer PDMDMA‐b‐MA and the four‐armed block copolymer S{poly[(2,2‐dimethyl‐1,3‐dioxolane‐4yl) methyl acrylate]‐block‐poly(methyl acrylate)}4, respectively. The block copolymers were hydrolyzed in an acidic aqueous solution, and the amphiphilic diblock and four‐armed block copolymers poly(2,3‐dihydroxypropyl acrylate)‐block‐poly(methyl acrylate) were prepared successfully. The structures of these block copolymers were verified with NMR and GPC measurements. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 3062–3072, 2001  相似文献   

18.
《Liquid crystals》2001,28(1):25-34
Photochromic acrylates containing both biphenylene and spiro-oxazine moieties with a chiral substituent and the related polymers were prepared and yielded photochromic chiral liquid crystalline systems. The photochromic acrylates containing both an undecamethylene group and a (2S, 3S)-2-chloro-3-methylpentanoyloxy group (A11SOP) or a (-)-menthoxyacetoxy group (A11SOM) gave a supercooled mesophase; the latter reflected right-handed visible light (blue colour) at room temperature. On the other hand, the photochromic acrylate containing both the (R)-(-)-2-methylpropylene and (2S, 3S)-2-chloro-3-methylpentanoyloxy groups (A3SOP) showed no mesophase. The related homopolymers, PA11SOP and PA11SOM, did not exhibit mesophases because of steric hindrance between the side groups of the polymers. However, only PA11SOM exhibited shear-induced birefringence under 100-104°C. Several copolymers consisting of the nematogenic monomer, 4-[4-(6-acryloyloxyhexyloxy)benzoyloxy]benzonitrile (A6CN), and A11SOP or A11SOM possessed a smectic phase due to reduction of the steric hindrance between the potentially smectogenic A11SOP or A11SOM moieties.  相似文献   

19.
Two acrylate monomers – 4‐(2′‐methoxycinnamoyl)phenyl acrylate, and 4‐(2′,5′‐dimethoxycinnamoyl)phenyl acrylate – comprising photocrosslinkable pendant chalcone moiety and a free radical polymerizable group were synthesized. The monomers were polymerized in the presence of ethyl methyl ketone at 70°C using benzoyl peroxide as the initiator. The polymers were characterized by UV, FT‐IR, 1H‐NMR, and 13C‐NMR spectra. The weight and number average molecular weights of the polymers were determined by gel permeation chromatography. The thermal stability of the polymers was studied by TGA under a nitrogen atmosphere. Glass transition temperatures of the polymers were studied by differential scanning calorimetry. The photoreactivity of the polymers was investigated for potential applications as photoresists in solution using various solvents. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

20.
Two types of arylidene compounds were synthesized by reacting p‐hydroxybenzaldehyde with acetone [1,5‐bis(4‐hydroxyphenyl)penta‐1,4‐dien‐3‐one] (PBHP) and cyclohexanone [2,6‐bis(4‐hydroxybenzylidene)cyclohexanone] (HBC). 1,4‐Pentadien‐3‐one‐1‐p‐hydroxyphenyl‐5‐p‐phenyl methacrylate (PHPPMA) and 4‐{[‐3‐(4‐hydroxybenzylidene)‐2‐oxocyclohexylidene]methyl}phenyl acrylate (HBA) were prepared by reacting PBHP and HBC with methacryloyl chloride and acryloyl chloride in the presence of triethylamine, respectively. Copolymerization of different feed compositions of PHPPMA and HBA with 2‐hydroxyethyl acrylate (HEA) was carried out using a free‐radical solution polymerization technique in ethyl methyl ketone (MEK) using benzoyl peroxide (BPO). All the monomer and polymers were characterized by IR and NMR (1H/13C) spectroscopic techniques. The reactivity ratio of the monomers were obtained using Fineman–Ross (FR), Kelen–Tudos (KT), and extended Kelen–Tudos (exKT) methods. The photocrosslinking properties of the polymers were done using a UV absorption spectroscopy technique. Homopolymers of both the arylidene polymers shows similar trend towards the rate of photocrosslinking. The rate of photocrosslinking was enhanced when the cyclohexanone based arylidene monomer was copolymerized with HEA. Thermal stability and molecular weights (Mw and Mn) of the polymers were determined. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3433–3444, 2004  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号