首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report on the calculations of kinetic energy distribution (KED) functions of multiply charged, high-energy ions in Coulomb explosion (CE) of an assembly of elemental Xe(n) clusters (average size (n) = 200-2171) driven by ultra-intense, near-infrared, Gaussian laser fields (peak intensities 10(15) - 4?×?10(16) W cm(-2), pulse lengths 65-230 fs). In this cluster size and pulse parameter domain, outer ionization is incomplete∕vertical, incomplete∕nonvertical, or complete∕nonvertical, with CE occurring in the presence of nanoplasma electrons. The KEDs were obtained from double averaging of single-trajectory molecular dynamics simulation ion kinetic energies. The KEDs were doubly averaged over a log-normal cluster size distribution and over the laser intensity distribution of a spatial Gaussian beam, which constitutes either a two-dimensional (2D) or a three-dimensional (3D) profile, with the 3D profile (when the cluster beam radius is larger than the Rayleigh length) usually being experimentally realized. The general features of the doubly averaged KEDs manifest the smearing out of the structure corresponding to the distribution of ion charges, a marked increase of the KEDs at very low energies due to the contribution from the persistent nanoplasma, a distortion of the KEDs and of the average energies toward lower energy values, and the appearance of long low-intensity high-energy tails caused by the admixture of contributions from large clusters by size averaging. The doubly averaged simulation results account reasonably well (within 30%) for the experimental data for the cluster-size dependence of the CE energetics and for its dependence on the laser pulse parameters, as well as for the anisotropy in the angular distribution of the energies of the Xe(q+) ions. Possible applications of this computational study include a control of the ion kinetic energies by the choice of the laser intensity profile (2D∕3D) in the laser-cluster interaction volume.  相似文献   

2.
3.
Indirect information on the conformation of highly charged molecular ions may be obtained by monitoring their collisional cross sections and the course of simple gas-phase reactions such as hydrogen-deuterium exchange. In this work, another indirect but more visually oriented approach is explored: electrosprayed protein ions are accelerated toward a highly oriented pyrolytic graphite surface and the resulting single-ion defects are imaged by scanning force and tunneling microscopy. All protein impacts generated shallow hillocks: the shapes depended on the identity and charge state of the incident protein. Lysozyme and myoglobin, both compact, globular proteins in the native state, produced compact, almost circular hillocks. However, hillocks generated by myoglobin that had been denatured in the solution phase were elongated, and the elongation was positively correlated with the charge state of the ion. It appears that structural information about gas-phase multiply charged proteins can be derived from imprints generated by energetic protein impacts on surfaces.  相似文献   

4.
The photoionization of methyl iodide beam seeded in argon and helium is studied by time-of-flight mass spectrometry using a 25 ns, 532 nm Nd-YAG laser with intensities in the range of 2 × 1010–2 × 1011 W/cm2. Multiply charged ions of Iq+ (q = 2–3) and C2+ with tens of eV kinetic energies have been observed when laser interacts with the middle part of the pulsed molecular beam, whose peak profiles are independent on the laser polarization directions. Strong evidences show that these ions are coming from the Coulomb explosion of multiply charged CH3I clusters, and laser induced inverse bremsstrahlung absorption of caged electrons plays a key role in the formation of multiply charged ions.  相似文献   

5.
6.
Multiply charged carbon ions up to C5+ ions have been observed from C2H2 and CH4 molecules in 1.05 MeV/amu Ar12+ ion impact. These ions are believed to be produced through processes where multiply charged molecular ions are produced first by direct ionization and, then, dissociate via Coulomb explosion into atomic ions. The peak positions of ions from C2H2 molecules are found to be shifted with respect to those of ions from CH4 molecules and this shift is understood to be due to the initial kinetic energy provided through the Coulomb potential between the dissociating ions.  相似文献   

7.
We report on studies of multiple ionization and fragmentation of free Hgn (n ≤ 80) clusters in the femtosecond time domain at wavelengths ranging from 255 nm to 800 nm. After excitation by single laser pulses of an intensity of 5 * 1011 W/cm2 we observe prompt formation of multiply charged Hgn clusters. The Hgn cluster size distribution observed up to n ≈ 80 shows in additon to singly charged also doubly and triply charged clusters with a surprisingly high amount of doubly charged clusters. The measured cluster size distribution is nearly independent of laser wavelengths. For higher laser intensities (2 * 1012 W/cm2) we observe multiply charged mercury atoms up to Hg5+. At 1013 W/cm2 molecules and clusters eventually disappear due to Coulomb explosion and complete Fragmentation. Only atomic ions, singly and multiply charged, with high kinetic energies are then observed.  相似文献   

8.
A semiempirical model for carbon clusters modeling is presented, along with structural and dynamical applications. The model is a tight-binding scheme with additional one- and two-center distance-dependent electrostatic interactions treated self-consistently. This approach, which explicitly accounts for charge relaxation, allows us to treat neutral and (multi-) charged clusters not only at equilibrium but also in dissociative regions. The equilibrium properties, geometries, harmonic spectra, and relative stabilities of the stable isomers of neutral and singly charged clusters in the range n=1-14, for C(20) and C(60), are found to reproduce the results of ab initio calculations. The model is also shown to be successful in describing the stability and fragmentation energies of dictations in the range n=2-10 and allows the determination of their Coulomb barriers, as examplified for the smallest sizes (C(2) (2+),C(3) (2+),C(4) (2+)). We also present time-dependent mean-field and linear response optical spectra for the C(8) and C(60) clusters and discuss their relevance with respect to existing calculations.  相似文献   

9.
The surface composition of charged Lennard-Jones clusters A(N) (n+), composed of N particles (55 ≤ N ≤ 1169) among which n are positively charged with charge q, thus having a net total charge Q = nq, is investigated by Monte Carlo with Parallel Tempering simulations. At finite temperature, the surface sites of these charged clusters are found to be preferentially occupied by charged particles carrying large charges, due to Coulombic repulsions, but the full occupancy of surface sites is rarely achieved for clusters below the stability limit defined in this work. Large clusters (N = 1169) follow the same trends, with a smaller propensity for positive particles to occupy the cluster surface at non-zero temperature. We show that these charged clusters rather behave as electrical spherical conductors for the smaller sizes (N ≤ 147) but as spheres uniformly charged in their volume for the larger sizes (N = 1169).  相似文献   

10.
The Coulomb explosion of ammonia clusters induced by nanosecond laser field with intensity in the range of 10(10)-10(12) W cm(-2) and wavelength of 532 and 1064 nm has been studied. N2+ and N3+ ions are the main multicharged ions at 532 nm, while He-like N5+ ion is the domain multicharged ion at 1064 nm.  相似文献   

11.
An unusually large fraction of multiply charged ions is observed in 'electron-free' matrix-assisted laser desorption/ionization (MALDI). Here we investigate how the yield of multiply charged ions depends on experimental parameters in MALDI. It is found to increase if measures are taken to limit the number of electrons in the plume, for example, by using non-metallic MALDI targets or low laser pulse energies. The ionization energy of the matrix is another important parameter that affects the yield of multiply charged ions: matrices with high ionization energies lead to greater intensities of multiply charged ions. It is furthermore proposed that some of the fragment ions observed in MALDI are due to reactions of analyte with electrons in the plume. The possibility of electron capture dissociation of multiply charged ions produced by MALDI is shown.  相似文献   

12.
Using time‐of‐flight mass spectrometry (TOFMS), laser‐induced photochemistry of ethyl bromide clusters has been investigated at three different wavelengths (viz. 266, 355 and 532 nm) utilizing nanosecond laser pulses of ~5 × 109 W/cm2. An interesting finding of the present work is the observation of multiply charged atomic ions of carbon and bromine at 355 and 532 nm, arising from the Coulomb explosion of (C2H5Br)n clusters. At 266 nm, however, the (C2H5Br)n clusters were found to exhibit the usual multiphoton dissociation/ionization behaviour. The TOFMS studies are complemented by measuring the total charge density of the ionized volume at 266, 355 and 532 nm, using the parallel plate method, and the charge densities were found to be ~2 × 109, 6 × 109 and 2 × 1011 charges/cm3, respectively. The significantly higher charge density and the presence of energetic, multiply charged atomic ions at 532 nm are explained by the higher ponderomotive energy of the 532 nm photon, coupled with the Coulomb stability of the residual multiply charged ethyl bromide clusters generated upon laser irradiation, due to their larger effective cluster size at 532 nm than at 355 and 266 nm. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
Electrospray ionization of poly(ethylene glycol) (PEG) followed by separation with Fourier-transform mass spectrometry traps (PEG100 + nH)n+ ions. Both collisionally activated dissociation (CAD) and electron capture dissociation (ECD) of these ions (n = 5, 6, 7) produce PEGx fragment ions in which the x values correspond closely to those for an equal distribution of charges in the linear polymer ion, e.g., for n = 7, near x = 1, 17, 34, 50, 67, 83, and 100. However, positions intermediate between these charges should represent the maximum coulombic repulsion, so this is not a specific driving force for fragmentation, which is instead consistent with charge site (CAD) or radical site (ECD) initiation. These conclusions were confirmed by studies of a variety of other poly(alkene glycol) polymers. For these, the ECD spectra of the protonated species are consistent with the predicted charge solvation by the ion's oxygen atoms.  相似文献   

14.
In this paper we present a theoretical and computational study of the energetics and temporal dynamics of Coulomb explosion of molecular clusters of deuterium (D2)n/2 (n = 480 - 7.6 x 10(4), cluster radius R0 = 13.1 - 70 A) in ultraintense laser fields (laser peak intensity I = 10(15) - 10(20)W cm(-2)). The energetics of Coulomb explosion was inferred from the dependence of the maximal energy EM and the average energy Eav of the product D+ ions on the laser intensity, the laser pulse shape, the cluster radius, and the laser frequency. Electron dynamics of outer cluster ionization and nuclear dynamics of Coulomb explosion were investigated by molecular dynamics simulations. Several distinct laser pulse shape envelopes, involving a rectangular field, a Gaussian field, and a truncated Gaussian field, were employed to determine the validity range of the cluster vertical ionization (CVI) approximation. The CVI predicts that Eav, EM proportional to R0(2) and that the energy distribution is P(E) proportional to E1/2. For a rectangular laser pulse the CVI conditions are satisfied when complete outer ionization is obtained, with the outer ionization time toi being shorter than both the pulse width and the cluster radius doubling time tau2. By increasing toi, due to the increase of R0 or the decrease of I, we have shown that the deviation of Eav from the corresponding CVI value (Eav(CVI)) is (Eav(CVI) - Eav)/Eav(CVI) approximately (toi/2.91tau2)2. The Gaussian pulses trigger outer ionization induced by adiabatic following of the laser field and of the cluster size, providing a pseudo-CVI behavior at sufficiently large laser fields. The energetics manifest the existence of a finite range of CVI size dependence, with the validity range for the applicability of the CVI being R0 < or = (R0)I, with (R0)I representing an intensity dependent boundary radius. Relating electron dynamics of outer ionization to nuclear dynamics for Coulomb explosion induced by a Gaussian pulse, the boundary radius (R0)I and the corresponding ion average energy (Eav)I were inferred from simulations and described in terms of an electrostatic model. Two independent estimates of (R0)I, which involve the cluster size where the CVI relation breaks down and the cluster size for the attainment of complete outer ionization, are in good agreement with each other, as well as with the electrostatic model for cluster barrier suppression. The relation (Eav)I proportional to (R0)I(2) provides the validity range of the pseudo-CVI domain for the cluster sizes and laser intensities, where the energetics of D+ ions produced by Coulomb explosion of (D)n clusters is optimized. The currently available experimental data [Madison et al., Phys. Plasmas 11, 1 (2004)] for the energetics of Coulomb explosion of (D)n clusters (Eav = 5 - 7 keV at I = 2 x 10(18) W cm(-2)), together with our simulation data, lead to the estimates of R0 = 51 - 60 A, which exceed the experimental estimate of R0 = 45 A. The predicted anisotropy of the D+ ion energies in the Coulomb explosion at I = 10(18) W cm(-2) is in accord with experiment. We also explored the laser frequency dependence of the energetics of Coulomb explosion in the range nu = 0.1 - 2.1 fs(-1) (lambda = 3000 - 140 nm), which can be rationalized in terms of the electrostatic model.  相似文献   

15.
We discuss the Coulomb fragmentation of highly charged metal clusters. The analogy with a classical conducting liquid drop is assessed from molecular dynamics calculations. Experimentally, the highly charged metal clusters are formed in collisions with highly charged ions (Xe20+, Ar11+, Ar8+, Ar3+, and O5+) at low velocity. We show new experimental data on the rate of emitted light charged particles that indicate an as yet unobserved fragmentation regime. Collisions of ions with metal clusters also offer a unique method to strongly excite the conducting electron gas within a short time of a few fs opening the possibility to study large amplitude electron dynamics and relaxation in microscopic systems.  相似文献   

16.
We report the results of experiments that establish the possibility of bringing about multiple ionization and Coulomb explosion of molecular clusters with nanosecond laser pulses at intensities as small as 10(9) W cm(-2). We demonstrate several new facets of the laser-cluster interaction in the low-intensity, long-pulse domain: (i) The choice of laser wavelength for a given cluster species is very crucial. (ii) Excited electronic states play a very important role in the ionization dynamics. (iii) When field ionization is insignificant and ponderomotive energies are very small, it is energy pooling rather than inverse bremsstrahlung that determines how clusters absorb energy from the optical field.  相似文献   

17.
A number of simple natural rubber (NR) and polybutadiene (BR) formulations were vulcanized in a differential scanning calorimeter. From the shapes of the exothermal cure curves the interaction of curatives can be examined. It is suggested that polysulphidic-accelerator-terminated pendent groups could either crosslink, or be chelated with zinc ions. The latter reaction allows interaction with accelerator molecules to reform the unchelated pendent group, and a zinc accelerator complex, that, in turn, can react with sulphur and rubber molecules to give pendent groups. Differences in the behavior of NR and BR are attributed to the relative rates of these two reactions in the elastomers. Bis(2-benzothiazolyl) disulphide does not react with zinc, and it is suggested that it coordinates with the zinc dithiolate accelerator complex, increasing its activity.  相似文献   

18.
The ionization properties of small group 10 metal oxide clusters are explored using ultrafast pulses centered at 624 nm. Maximum atomic charge states resulting from Coulomb explosion were observed to be Ni(3+), Pd(3+), Pt(5+), and O(2+) species with similar ionization potentials ~30-35 eV. Ion signal as a function of laser intensity of each charge state of Ni, Pd, Pt, and O resulting from Coulomb explosion was mapped and compared to that predicted from semi-classical tunneling theory using sequential ionization potentials to quantify observed enhancements in ionization. The saturation intensity (I(sat)) of each charge state is measured and compared to previous studies on group 5 transition metal oxides. The atomic charge states of nickel showed a large enhancement in ionization compared to palladium and platinum, reflective of the differing bonding properties of each metal with oxygen. Results indicate that nickel oxide clusters undergo a greater extent of ionization enhancement as a result of multiple ionization mechanisms. The ionization enhancement behavior of each metal oxide species is explored herein.  相似文献   

19.
The distribution of charge z and radii R in clusters electrosprayed from formamide solutions of tetraheptylammonium bromide was investigated by selecting those within a narrow range of electrical mobilities Z(1) in a first differential mobility analyzer (DMA), reducing their charge to unity by passage through a neutralizing chamber containing a radioactive (alpha) source, and measuring the mobilities Z(z) of the resulting discrete set of singly charged clusters in a second DMA. After correcting for the polarization contribution to cluster drag, the tandem DMA data yield the range of radii present at detectable levels for each charge state up to z = 9. Because small ion evaporation from electrospray drops leads to charge loss when a drop reaches a certain critical radius R(crit)(z), the measured maximum and minimum cluster radii associated with a given z can be used to infer the activation energy Delta for ion evaporation as a function of drop charge and curvature. These results confirm the Iribarne-Thomson ion-evaporation mechanism, and support earlier theoretical expressions for the functional form of Delta(z,R). The different phenomenon of ion evaporation from metastable multiply charged dry clusters is also observed at characteristic times of 1 s. Its activation energy is estimated as approximately 0.3 eV larger than for ion evaporation from the drops. This new process complicates the interpretation of the present measurements in terms of ion evaporation from liquid surfaces, but introduces no radical change in the picture. It helps understand why salt clusters with more than two or three charges are harder to see in mass spectrometers than in mobility studies under ambient conditions. Copyright 2000 John Wiley & Sons, Ltd.  相似文献   

20.
El-Khiami I  Johnson RM 《Talanta》1967,14(7):745-752
The polarographic reduction of bis(2-pyridyl)- and of bis(2-quinolyl)disulphide di-N-oxide in aqueous alcohol yields aryl mercaptans. The electrode reaction is kinetically controlled by an initial one-electron transfer step, and values for the transfer coefficients and the specific heterogeneous rate constants for the forward reactions are presented. The polar N-oxide function in the alpha-position withdraws electrons from the disulphide bond, making the half-wave potential less negative than that of the diphenyl disulphide. The pk(a) values of the mercapto compounds formed have been evaluated and the low values obtained for the heterocyclic N-oxides are further evidence for tautomerism in these compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号