首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The basic geometric and physical relations and resolving equations of the theory of thin and nonthin orthotropic composite shells with account of nonlinear properties and low shear rigidity of their materials are presented. They are derived based on two theories, namely the theory of anisotropic shells employing the Timoshenko or Kirchhoff-Love hypothesis and the nonlinear theory of elasticity and plasticity of anisotropic media in combination with the Lagrange variational principle. The procedure and algorithm for the numerical solution of nonlinear (linear) problems are based on the method of successive approximations, the difference-variational method, and the Lagrange multiplier method. Calculations of the stress-strain state for a spherical shell with a circular opening loaded with internal pressure are presented. The effect of transverse shear strains and physical nonlinearity of the material on the distribution of maximum deflections and circumferential stresses in the shell, obtained according to two variants of the shell theories, is studied. A comparison of the results of the problem solution in linear and nonlinear statements with and without account of the shell shear strains is given. The numerical data obtained for thin and nonthin (medium thick) composite shells are analyzed.  相似文献   

2.
The author examines orthotropic layered cylindrical shells for which the moduli of elasticity of the load-carrying layers substantially exceed the shear modulus between layers. This class of structure includes, in particular, shells made of orthotropic glass-reinforced plastic. In this case the classical theory based on the Kirchhoff-Love hypotheses requires refinement; the corresponding equations obtained as a result of approximating the distribution of shear stresses or displacements over the thickness of the shell by a certain known function are presented in [4, 7, 8]. In this paper equations that make it possible to construct the stress distribution over the shell thickness are obtained within the framework of the engineering theory on the basis of the hypothesis of the incompressibility of a normal element.Mekhanika Polimerov, Vol. 4, No. 1, pp. 136–144, 1968  相似文献   

3.
厚壁圆柱壳开孔应力集中问题的复变函数解法   总被引:1,自引:0,他引:1  
本文基于考虑横向剪切变形影响的厚壳理论建立了求解圆柱壳开孔应力集中问题的复变函数方法,得到了此种问题的一般解和满足任意形开孔边界条件的表达式·该应力集中问题可以简化为求解无穷代数方程组的问题·用复变函数方法可以规范地求解应力集中问题·文中给出了圆柱壳开小圆孔和椭圆孔时应力集中系数的数值结果·  相似文献   

4.
Discrete analogues of the boundary-value problems of a two-dimensional refined theory of anisotropic shells taking into account the transverse shear deformation are presented. The systems of resolving equations in the general form are obtained for arbitrary nonshallow shells of variable curvature whose coordinate lines of the reduction surface may not coincide with the lines of principal curvatures. The algebraic problems of determining the stress-strain state in shells made of composite materials with stress concentrators under various kinds of loads are obtained as particular cases of the schemes presented. The results of calculating the stress concentration near a nonsmall circular hole in a transversely isotropic nonshallow spherical shell under internal pressure are presented. The dependences of stress concentration factors on the hole dimension and on a change in the shear stiffness of the shells are studied. A comparison between the calculation results obtained within the framework of the theories of shallow and nonshallow shells is given.Presented at the 11th International Conference on the Mechanics of Composite Materials (Riga, June 11–15, 2000).Timoshenko Institute of Mechanics, Ukranian National Academy of Sciences, Kiev, Ukraine. Translated from Mekhanika Kompozitnykh Materialov, Vol. 36, No. 4, pp. 465–472, July–August, 2000.  相似文献   

5.
Many thin three-dimensional elastic bodies can be reduced to elastic shells: two-dimensional elastic bodies whose reference shape is not necessarily flat. More generally, morphoelastic shells are elastic shells that can remodel and grow in time. These idealized objects are suitable models for many physical, engineering, and biological systems. Here, we formulate a general geometric theory of nonlinear morphoelastic shells that describes both the evolution of the body shape, viewed as an orientable surface, as well as its intrinsic material properties such as its reference curvatures. In this geometric theory, bulk growth is modeled using an evolving referential configuration for the shell, the so-called material manifold. Geometric quantities attached to the surface, such as the first and second fundamental forms, are obtained from the metric of the three-dimensional body and its evolution. The governing dynamical equations for the body are obtained from variational consideration by assuming that both fundamental forms on the material manifold are dynamical variables in a Lagrangian field theory. In the case where growth can be modeled by a Rayleigh potential, we also obtain the governing equations for growth in the form of kinetic equations coupling the evolution of the first and the second fundamental forms with the state of stress of the shell. We apply these ideas to obtain stress-free growth fields of a planar sheet, the time evolution of a morphoelastic circular cylindrical shell subject to time-dependent internal pressure, and the residual stress of a morphoelastic planar circular shell.  相似文献   

6.
A very simple variant of the geometrically nonlinear theory of anisotropic shells with allowance for the high compliance of the material in transverse shear is proposed. From this theory there follow, as a special case, the equations for an isotropic shell; these differ from the relations of [2] with respect to terms of the order of the ratio of the thickness of the shell to the radii of curvature small as compared with unity. The equations obtained are used to solve the problem of the stability of orthotropic shells of revolution relative to the starting axisymmetric state of stress.Translated from Mekhanika Polimerov, No. 5, pp. 863–871, September–October, 1969.  相似文献   

7.
Stress-strain state of multilayer anisotropic cylindrical shells under a local pressure is studied. Such a problem may model the bending of an asbestos nanotube under the action of a research probe. In earlier works, these authors showed that the application of classical shell theories yields results far from experimental data. More accurate results are obtained by taking into account additional factors, such as the change of the transverse displacement magnitude (according to the Timoshenko-Reissner theory) or the layered structure of asbestos and cylindrical anisotropy (according to the Rodinova-Titaev-Chernykh theory). In the present paper, yet another shell theory, the Palii-Spiro theory, is applied to solve the problem; this theory was developed for shall of average thickness and is based on the following assumptions: (a) the rectilinear fibers of the shell perpendicular to its middle surface before deformation remain rectilinear after deformation; (b) the cosine of the angle between the shell of such fibers and the middle surface of the deformed shell equals the averaged angle of the transverse displacement. Deformation field are studied with the use of nonclassical (the Rodinova-Titaev-Chernykh and Palii-Spiro) shell theories; a comparison with results obtained for three-dimensional models with the use of the Ansys 11 package is performed.  相似文献   

8.
We used the spline collocation method for finding the frequencies of free vibrations of circular closed cylindrical shells of variable thickness in the circumferential direction. The problem was formulated within the framework of Mindlin’s refined theory. We studied the influence of change in the shell thickness on the distribution of its natural frequencies. Our calculations were carried out for different geometrical parameters of the shell and different boundary conditions. The validity of results obtained was verified by increasing the number of collocation points in our calculations and by comparing them with the results of computations according to the three-dimensional theory.  相似文献   

9.
Soft shells made of elastomers and undergoing large deformations under load are studied. The inverse design problem, non-linear under large deformations, is solved. The results obtained are illustrated on a two-parameter shell of revolution fabricated from a two-constant material. The problems of coupling the biaxial and uniaxial zones of the shell and of designing the composite shell are clarified. Amongst the papers dealing with the theory of soft shells and, generally, under small deformations, /1–7/ merit attention.  相似文献   

10.
本文采用Donnell型扁壳理论,首先利用最小势能原理和广义平均筋条刚度法推导出用位移分量表示的复合材料三角形网格加筋叠层圆锥壳体的稳定性方程,考虑了蒙皮最一般的拉弯与拉扭耦合关系和加筋筋条的偏心效应,并讨论了该方程的基本性质.根据外压实验观察结果,通过选取适当的位移分量表达式,并运用Galerkin法分析了在均布外压作用下复合材料三角形网格加筋叠层圆锥壳体总体稳定性,得到了临界载荷的解析表达式,并对某一类C/E复合材料三角形内网格加筋圆锥壳体的临界外压进行了计算,所得理论值与实验结果很好地吻合.最后,讨论了有关参数对临界载荷的影响.本文所建立的新方程和所得结果对于航空航天结构非常有用.  相似文献   

11.
This paper is devoted to a closed cylindrical shell made of a porous-cellular material. The mechanical properties vary continuously on the thickness of a shell. The mechanical model of porosity is as described as presented by Magnucki, Stasiewicz. A shell is simply supported on edges. On the ground of assumed displacement functions the deformation of shell is defined. The displacement field of any cross section and linear geometrical and physical relationships are assumed in cylindrical coordinate system. The components of deformation and stress state were found. Using the Hamilton's principle the system of differential equations of dynamic stability is obtained. The forms of unknown functions are assumed and the system of a differential equations is reduced to a simple ordinary equation of dynamic stability of shell (Mathieu's equation). The derived equation are used for solving a problem of dynamic stability of porous-cellular shell with intensity of load directed in generators of shell. The critical loads are derived for a family of porous shells. The unstable space of family porous shells is found. The influence a coefficient of porosity on the stability regions in Figures is presented. The results obtained for porous shell are compared to a homogeneous isotropic cylindrical shell. (© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
The stress analysis based on the theory of a thin shell is carried out for cylindrical shells with normally intersecting nozzles subjected to external moment loads on the ends of shells with a large diameter ratio 0 «0. 8). Instead of the Donnell shallow shell equation, the modified Morley equation, which is applicable toρ 0(R/T)1/2 »1, is used for the analysis of the shell with cutout. The solution in terms of displacement function for the nozzle with a nonplanar end is based on the Goldenveizer equation. The boundary forces and displacements at the intersection are all transformed from Gaussian coordinates (α, β) on the shell, or Gaussian coordinates (ζ, θ) on the nozzle into three-di-mensional cylindrical coordinates(ρ,θ, z). Their expressions on the intersecting curve are periodic functions ofθ and expanded in Fourier series. Every harmonic of Fourier coefficients of boundary forces and displacements are obtained by numerical quadrature. The results obtained are in agreement with those from the three-dimensional finite element method and experiments.  相似文献   

13.
The state of stress of a circular glass-reinforced cylinder strengthened with equally spaced stiffening ribs has been investigated for uniform axisymmetric and longitudinal loads of intensity p. A system of equilibrium equations is obtained for the shell on the assumption that Hooke's law is valid and that the angles of rotation and shear are commensurable for deformation of an element of the structure. A solution of this system is given for boundary conditions that take into account the compatibility of strains of shell and ribs. As a result of an analysis of the solution the limits of applicability of the theory of thin shells to this type of structure are determined, the effect of anisotropy of the material is estimated, and recommendations are made regarding the choice of optimal reinforcing schemes for cylindrical shells.Mekhanika Polimerov, Vol. 2, No. 1, pp. 108–115, 1966  相似文献   

14.
The aim of the present short review is the exposition of the fundamental results obtained by Academician I. N. Vekua (1907–1977) in the theory of shells. The review deals with questions of constructing different versions of shell theory, questions of the infinitesimal bending of a surface of positive curvature and equilibrium membrane states of stress of a convex shell, and also the statically determinable problems and questions of existence of a neutral surface of the shell, i.e. the questions which Vekua investigated in different periods of his versatile scientific actively. __________ Translated from Sovremennaya Matematika i Ee Prilozheniya (Contemporary Mathematics and Its Applications), Vol. 51, Differential Equations and Their Applications, 2008.  相似文献   

15.
A novel version of reductive perturbation theory is proposed for analysing the dynamics of bends in a longitudinally compressed, non-linear elastic cylindrical shell near the stability threshold given by the linear theory. Soliton-like annular folds and patterns of diamond-shaped dents on the shell surface are predicted and analytically described. Similar formations, which are both stress concentrators and precursors of plastic flow of the material, contain information on the precritical stress state of the shell. It is shown that a shell with dents supports an external load, which is tens of percent less than the upper critical load in the linear theory of shells. The conditions for the formation of and explicit expressions for solitary waves that propagate along the generatrix of the shell on a background of arrays of folds and dents are found.  相似文献   

16.
Based on the theory of Timoshenko-type shells, the influence of material inhomogeneity on the stress concentration in a shell with an opening is investigated. Mechanical characteristics of the shell material in the opening zone vary according to a given linear law. The problem is solved by a variational-difference method. Results for a spherical orthotropic shell with a polar circular opening are presented.  相似文献   

17.
The elastoplastic stress-strain state of cylindrical shells weakened by a curvilinear (circular) hole is investigated. Numerical results are given for shells with a reinforced hole under the action of an internal pressure of specified intensity. The influence of the geometric parameters of the shell on the stress distribution in the concentration zone is investigated in the elastic and inelastic stages of deformation. The variation in flexure along the hole contour is given for linear and nonlinear problems, and the distribution of the maximum stress-concentration coefficients is also given for various geometric parameters.Translated from Teoreticheskaya i Prikladnaya Mekhanika, No. 19, pp. 100–103, 1988.  相似文献   

18.
A postbuckling analysis is presented for a shear-deformable anisotropic laminated cylindrical shell of finite length subjected to external pressure in thermal environments. The material properties are expressed as linear functions of temperature. The governing equations are based on Reddy’s higher-order shear-deformation shell theory with the von Karman-Donnell-type kinematic nonlinearity. The nonlinear prebuckling deformations and initial geometric imperfections of the shell are both taken into account. The boundary-layer theory of shell buckling, which includes the effects of nonlinear prebuckling deformations, large deflections in the postbuckling region, and the initial geometric imperfections of the shell, is extended to the case of shear-deformable anisotropic laminated cylindrical shells under lateral or hydrostatic pressure in thermal environments. The singular perturbation technique is employed to determine the interactive buckling loads and postbuckling equilibrium paths. The results obtained show that the variation in temperature, layer setting, and the geometric parameters of such shells have a significant influence on their buckling load and postbuckling behavior. Russian translation published in Mekhanika Kompozitnykh Materialov, Vol. 43, No. 6, pp. 789–822, November–December, 2007.  相似文献   

19.
A method to predict the dynamic behaviour of anisotropic truncated conical shells conveying fluid is presented in this paper. It is a combination of finite element method and classical shell theory. The displacement functions are derived from exact solutions of Sanders’ shell equilibrium equations of conical shells. The velocity potential, Bernoulli’s equation and impermeability condition have been applied to the shell–fluid interface to obtain an explicit expression for fluid pressure which yields three forces (inertial, centrifugal, Coriolis) of the moving fluid. To the best of the authors’ knowledge, this paper reports the first comparison made between two works which deal with conical shells subjected to internal flowing fluid effects. The results obtained by this method for conical shells with various boundary condition and geometries, in vacuum, fully-filled and when subjected to flowing fluid were compared with those of other experimental and numerical investigations and good agreement was obtained.  相似文献   

20.
The problem of buckling instability of cylindrical shells under axial compression is considered. The shells consist of cylindrical sections of smaller radius. The geometrical parameters of the shells are approximated by Fourier series on a discrete point set. A Timoshenko-type shell theory is used. The solution is obtained in the form of trigonometric series. It is shown that shells consisting of cylindrical sections have considerable advantages over circular ones. At a constant shell weight, the choice of suitable parameters of shell sections leads to a significant increase in the critical load. The composite shells considered possess higher efficiency indices in comparison with isotropic ones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号