首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 978 毫秒
1.
This paper studies interactions of pipe and fluid and deals with bifurcations of a cantilevered pipe conveying a steady fluid, clamped at one end and having a nozzle subjected to nonlinear constraints at the free end. Either the nozzle parameter or the flow velocity is taken as a variable parameter. The discrete equations of the system are obtained by the Ritz-Galerkin method. The static stability is studied by the Routh criteria. The method of averaging is employed to examine the analytical results and the chaotic motions. Three critical values are given. The first one makes the system lose the static stability by pitchfork bifurcation. The second one makes the system lose the dynamical stability by Hopf bifurcation. The third one makes the periodic motions of the system lose the stability by doubling-period bifurcation. The project supported by the Science Foundation of Tongji University and Tongji University and National Key Projects of China under Grant No. PD9521907.  相似文献   

2.
Dilute polymer blends and immiscible liquid emulsions are characterized by a globular morphology. The dynamics of a single drop subjected to an imposed flow field has been considered to be a valuable model system to get information on dilute blends. This problem has been studied either theoretically by developing exact theories for small drop deformations or by developing simplified models often based on phenomenological assumptions. In this paper, a critical overview of the available models for the dynamics of a single drop is presented, discussing four different systems, namely the Newtonian system, where a single Newtonian drop is immersed in an infinite Newtonian matrix; the non-Newtonian system, where at least one of the components, the drop fluid or the matrix one, is non-Newtonian; the confined Newtonian system, where the matrix is confined and wall effects alter the drop dynamics; and the confined non-Newtonian system.  相似文献   

3.
FOGLI  M.  BRESSOLETTE  PH. 《Meccanica》1997,32(1):1-12
An approximate analytical procedure is presented to estimate theresponse spectrum of an oscillator with elastic impacts under a Gaussian whitenoise excitation. The proposed approach is based on a perturbation analysis ofthe problem and on the use of the stochastic averaging principle. The basicidea is to replace the initial system by a more regular system obtained byapproximating the nonlinear restoring force by a Chebychev polynomial, and thento construct for this regular system two approximations: one for the flowand one for the stationary distribution of the response amplitude. Ananalytical approximation of the response spectrum can then be derived fromthese results. Predictions from this analytical approximation are compared with corresponding digital simulation estimates and with the ones obtained from theconventional equivalent linearization method.  相似文献   

4.
Electro-mechanical devices are an example of coupled multi-disciplinary weakly non-linear systems. Dynamics of such systems is described in this paper by means of two mutually coupled differential equations. The first one, describing an electrical system, is of the first order and the second one, for mechanical system, is of the second order. The governing equations are coupled via linear and weakly non-linear terms. A classical perturbation method, a method of multiple scales, is used to find a steady-state response of the electro-mechanical system exposed to a harmonic close-resonance mechanical excitation. The results are verified using a numerical model created in MATLAB Simulink environment. Effect of non-linear terms on dynamical response of the coupled system is investigated; the backbone and envelope curves are analyzed. The two phenomena, which exist in the electro-mechanical system: (a)?detuning (i.e. a natural frequency variation) and (b)?damping (i.e. a decay in the amplitude of vibration), are analyzed further. An applicability range of the mathematical model is assessed.  相似文献   

5.
The problem of finding the angular rotation velocity of a body using the orientation matrix whose elements are determined by a tracking system is considered. Two methods of solving this problem are compared. One of them is based on the representation of the function in the form of a partial sum of the Fourier series and the second one is based on using the Savitzky-Golay filter.  相似文献   

6.
The non-linear dynamic behaviors of a rotor-bearing-seal coupled system are investigated by using Muszynska’s non-linear seal fluid dynamic force model and non-linear oil film force, and the result from the numerical analysis is in agreement with the one from the experiment. The bifurcation of the coupled system is analyzed under different operating conditions. It is indicated that the dynamic behavior of the rotor-bearing-seal system depends on the rotation speed, seal clearance and seal pressure of the rotor-bearing-seal system. The system state trajectory, Poincaré maps, frequency spectra and bifurcation diagrams are constructed to analyze the dynamic behavior of the rotor center. Various non-linear phenomena in the coupled system, such as periodic motion and quasi-periodic motion are investigated. The results show that the system has the potential for chaotic motion. The study may contribute to a further understanding of the non-linear dynamics of such a rotor-bearing-seal coupled system.  相似文献   

7.
A problem on the interaction of a spherical body oscillating in a predetermined fashion and a rigid cylinder is formulated. The bodies do not intersect, are immersed into an ideal compressible liquid, and their centers are in one plane. The solution is based on the possibility of representing the partial solution of the Helmholtz equation, written in cylindrical coordinates, in terms of partial solutions in spherical coordinates, and vice versa. An infinite system of linear algebraic equations is obtained by satisfying the boundary conditions on the sphere and cylinder surfaces. The system is intended for determining the coefficients of the expansion of the velocity potential into a series in terms of spherical and trigonometric functions. The system obtained is solved by the reduction method. The appropriateness of this method is substantiated. The hydrodynamic characteristics of the liquid surrounding the spherical and cylindrical bodies are determined. A comparison is made with the problem on a sphere oscillating in an infinite incompressible liquid that contains also a cylinder and in a compressible liquid that contains nothing more. Two types of motion of the sphere — pulsation and oscillation — are considered  相似文献   

8.
9.
The measurement of ground deformation during a volcanic eruption is one of the main tools for the monitoring of active volcanoes. The deformation is caused by processes that are occurring in the chamber–conduit system, as well as in the geothermal systems that are heated by ascending magma. The influence of the magma chamber and, to a lesser degree, of the conduit on deformation in host rocks is sufficiently well known theoretically, but no studies have been made to investigate the effects of a hydrothermal system on measurable ground deformation during a volcanic eruption. We made a comparative study of the ground deformation due to two deformation-initiating sources: a fissure conduit with a specified excess pressure and a hydrothermal system that was heated by magma flow. We show that the vertical deformation due to the activity of a geothermal system can exceed that due to magma flow by factors of several times. The spatial distributions of the deformation are also substantially different. The vertical displacement due to a geothermal system has its maximum above the fissure conduit, while when the pressure varies in the conduit it induces a local subsidence of the ground; the maximum ground uplift is at a distance of approximately twice the depth to the top of the conduit. The influence of the geothermal system should be incorporated in interpretations of data that come from the monitoring of active volcanoes.  相似文献   

10.
The effect of an electric field on the buoyancy-driven motion of a two-dimensional gas bubble rising through a quiescent liquid is studied computationally. The dynamics of the bubble is simulated numerically by tracking the gas–liquid interface when an electrostatic field is generated in the vertical gap of the rectangular enclosure. The two phases of the system are assumed to be perfect dielectrics with constant but different permittivities, and in the absence of impressed charges, there is no free charge in the fluid bulk regions or at the interface. Electric stresses are supported at the bubble interface but absent in the bulk and one of the objectives of our computations is to quantify the effect of these Maxwell stresses on the overall bubble dynamics. The numerical algorithm to solve the free-boundary problem relies on the level-set technique coupled with a finite-volume discretization of the Navier–Stokes equations. The sharp interface is numerically approximated by a finite-thickness transition zone over which the material properties vary smoothly, and surface tension and electric field effects are accounted for by employing a continuous surface force approach. A multi-grid solver is applied to the Poisson equation describing the pressure field and the Laplace equation governing the electric field potential. Computational results are presented that address the combined effects of viscosity, surface tension, and electric fields on the dynamics of the bubble motion as a function of the Reynolds number, gravitational Bond number, electric Bond number, density ratio, and viscosity ratio. It is established through extensive computations that the presence of the electric field can have an important effect on the dynamics. We present results that show a substantial increase in the bubble’s rise velocity in the electrified system as compared with the corresponding non-electrified one. In addition, for the electrified system, the bubble shape deformations and oscillations are smaller, and there is a reduction in the propensity of the bubble to break up through increasingly larger oscillations.  相似文献   

11.
The dynamical analysis of a single-mode model of non-contact AFM with external feedback control is carried out in the strongly non-linear regime. The aim of the study is to investigate and verify the effects of the control introduction on the system overall behavior, which could be unexpectedly influenced by the local nature of the control technique. For this purpose, a variety of behavior charts around primary and subharmonic resonances are obtained together with several bifurcation diagrams to detect the main local bifurcation thresholds as a function of the most relevant system parameters. The comparison with the results obtained for the corresponding uncontrolled system allows one to comprehensively evaluate the effectiveness and possible criticalities of the control actuation on the system dynamics, with also a view to the overall response scenario.  相似文献   

12.
The time-optimal problem is considered for a nonlinear Lagrangian system with one degree of freedom. The system is controlled by a force bounded in absolute value, and all noncontrol forces are potential.We study the properties of optimal synthesis on the phase cylinder and indicate the conditions under which it has the simplest structure, namely, involves at most one switching for any initial conditions. The approach is used to specify the structure of the well-known solution in the classical problem on the time-optimal satellite attitude transition maneuver in the orbit plane.  相似文献   

13.
In the paper the one-mass two degree-of-freedom system with non-ideal excitation is considered. The resonance motion of the system is investigated. The mathematical model of the system contains three coupled second order differential equations. In the paper an analytical solving procedure is developed. The steady-state motion and the criteria for stability of solutions are developed. Two special cases of motion depending on the frequency properties of the system are studied. When the frequency properties in both orthogonal direction are equal there is only one resonance. If the frequency in one direction is two times higher than in other two different resonances occur: one in x and the other in y direction. The conditions for jump phenomena and for Sommerfeld effect are presented. The analytically obtained solutions are compared with numerical ones. They show good agreement.  相似文献   

14.
Nonlinear dynamic behaviors of a rotor-labyrinth seal system   总被引:2,自引:0,他引:2  
The nonlinear model of rotor-labyrinth seal system is established using Muszynska’s nonlinear seal forces. We deal with dynamic behaviors of the unbalanced rotor-seal system with sliding bearing based on the adopted model and Newmark integration method. The influence of the labyrinth seal one the nonlinear characteristics of the rotor system is analyzed by the bifurcation diagrams and Poincare’ maps. Various phenomena in the rotor-seal system, such as periodic motion, double-periodic motion, quasi-periodic motion and Hopf bifurcation are investigated and the stability is judged by Floquet theory and bifurcation theorem. The influence of parameters on the critical instability speed of the rotor-seal system is also included.  相似文献   

15.
Based on Timoshenko beam theory, the dynamic response of an elastically connected multiple-beam system is investigated. The identical prismatic beams are assumed to be parallel and connected by a finite number of springs. Assuming n parallel Timoshenko beams, the motion of the system is described by a coupled set of 2n partial differential equations. The method involves a change of variables and modal analysis to decouple and to solve the governing differential equations, respectively. A case study is solved in detail to demonstrate the methodology and several plots of the midpoint deflections of beams are given and investigated for different values of moving load velocity and the stiffness of elastic connections. From the numerical results it is observed that the maximum deflection of the multiple Timoshenko beam system is always smaller than one of a single beam.  相似文献   

16.
—A single degree-of-freedom system with a white-noise excitation is considered. The problem is to detect a non-linearity of the system's restoring force and to estimate its level from measured steady-state response. Three alternative methods are considered, one of which is based on estimating probability density, and two others on spectral analysis of the response. The analytical background for these methods is outlined. In particular, the procedure of cross-correlating amplitudes of the resonant response component and of its integer multiple component is proposed. The results of verification of the methods by computer simulation are presented.  相似文献   

17.
This paper deals with the study of behaviour of an idealized 2D hydroelastic system involving two inviscid liquids with an elastic rectangular container. The main objective is to investigate the influence of the physical parameters on eigenfrequencies and eigenmodes of the system. The study extends the previous results obtained for hydroelastic systems with one fluid. The governing equations describing the behaviour of the system are analyzed by using the concept of normal modes and their solutions presented in the form of infinite series. The expansion coefficients for the velocity potentials are calculated by employing a new inner product that allows the orthogonalisation of the normal modes. An eigenfrequency equation is then derived from the existence condition of a nontrivial solution. The numerical calculations are performed by varying only some relevant parameters.  相似文献   

18.
This paper considers the steady-state behavior of a transversally excited, buckled pinned–pinned beam, which is free to move axially on one side. This research focuses on higher order single-mode as well as multimode Galerkin discretizations of the beam’s partial differential equation. The convergence of the static load-paths and eigenfrequencies (of the linearized system) of the various higher-order Taylor approximations is investigated. In the steady-state analyses of the semianalytic models, amplitude–frequency plots are presented based on 7th order approximations for the strains. These plots are obtained by solving two-point boundary value problems and by applying a path-following technique. Local stability and bifurcation analysis is carried out using Floquet theory. Dynamically interesting areas (bifurcation points, routes to chaos, snapthrough regions) are analyzed using phase space plots and Poincaré plots. In addition, parameter variation studies are carried out. The accuracy of some semianalytic results is verified by Finite Element analyses. It is shown that the described semianalytic higher order approach is very useful for fast and accurate evaluation of the nonlinear dynamics of the buckled beam system.  相似文献   

19.
In this paper we study the transonic shock in steady compressible flow passing a duct. The flow is a given supersonic one at the entrance of the duct and becomes subsonic across a shock front, which passes through a given point on the wall of the duct. The flow is governed by the three-dimensional steady full Euler system, which is purely hyperbolic ahead of the shock and is of elliptic–hyperbolic composed type behind the shock. The upstream flow is a uniform supersonic one with the addition of a three-dimensional perturbation, while the pressure of the downstream flow at the exit of the duct is assigned apart from a constant difference. The problem of determining the transonic shock and the flow behind the shock is reduced to a free-boundary value problem. In order to solve the free-boundary problem of the elliptic–hyperbolic system one crucial point is to decompose the whole system to a canonical form, in which the elliptic part and the hyperbolic part are separated at the level of the principal part. Due to the complexity of the characteristic varieties for the three-dimensional Euler system the calculus of symbols is employed to complete the decomposition. The new ingredient of our analysis also contains the process of determining the shock front governed by a pair of partial differential equations, which are coupled with the three-dimensional Euler system. The paper is partially supported by National Natural Science Foundation of China 10531020, the National Basic Research Program of China 2006CB805902, and the Doctorial Foundation of National Educational Ministry 20050246001.  相似文献   

20.
Przybyłowicz  Piotr M. 《Meccanica》2003,38(6):763-770
The paper is concerned with the problem of stability of a power transmitting thin-walled shaft made of the active laminate PFC (piezoelectric fiber composite). The shaft rotates with a given operational angular velocity, and is loaded by a static torque. Such a system is known to exhibit divergence or oscillating type of instability. On the one hand presence of internal friction in the material of the shaft leads to loss of stability at a certain critical rotation speed. The static torque can be responsible for spatial deformation of the shaft axis on the other. A method preventing the system from such behavior is discussed in the paper. The method is based on application of a composite material, which contains active piezoelectric fibers. The fibers produce bending moments, and this way affect the dynamics of the entire system. Two control strategies are investigated. Results of numerical simulations are presented graphically.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号