首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
基于不可逆热力学,引入运动硬化、等向硬化和损伤内变量,构造了相应的自由能函数和流动势函数,推导出了混凝土材料的粘塑性损伤本构模型.数值模拟的结果表明,该模型能够避开屈服面和破坏准则的基本假设来描述混凝土材料的以下特性:压缩载荷作用下的体积膨胀现象;应变率敏感性;峰值后由损伤和破坏引起的应力软化和刚度退化现象A·D2由于此模型避开了根据各种变形阶段选择与其相应的本构模型的繁琐计算,因此更便于纳入复杂工况下应力分析有限元程序中.  相似文献   

3.
Boundary value problems for Laplace’s equation are considered in a piecewise homogeneous plane divided into two zones by a strongly permeable crack or a weakly permeable screen in the form of a parabola. The desired potentials have prescribed singular points (sources, sinks, etc.). Formulas are derived expressing the potentials in terms of harmonic functions that have the given singular points and describe similar processes in a homogeneous plane.  相似文献   

4.
A new expression for bottom friction is developed for use in two-dimensional hydrodynamical models of shallow homogeneous seas, estuaries, and lakes. Bottom stress is provided by a single relaxation approximation which can be used to replace the conventional parametrization in any existing explicit time-stepping model. The method produces the correct steady state flow for wind-driven circulation in shallow systems. It derives the bottom stress from the vertical eddy viscosity which can have any prescribed variation through the water column. The single relaxation approximation uses a recursive relation for bottom stress involving only values at the previous time step and a pair of precomputed coefficients at each grid point.  相似文献   

5.
In this paper a micromechanically based flow potential for anisotropic fcc polycrystals is derived that takes into account the crystallite orientation distribution function (codf) in terms of tensorial texture coefficients. The effective flow potential is based on a representation theorem for anisotropic scalar functions depending on a 2nd-order tensor. A priori unknown functions in the representation are determined by defining and solving explicitly a minimization problem over SO(3). Important analytical properties of the coefficient matrix of the minimization problem are discussed. (© 2009 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
A system of integral equations for the field and its normal derivative on the boundary in acoustic or potential scattering by a penetrable homogeneous object in arbitrary dimensions is presented. The system contains the operators of the single and double layer potentials, of the normal derivative of the single layer, and of the normal derivative of the double layer potential. It defines a strongly elliptic system of pseudodifferential operators. It is shown by the method of Mellin transformation that a corresponding property, namely a Gårding's inequality in the energy norm, holds also in the case of a polygonal boundary of a plane domain. This yields asymptotic quasioptimal error estimates in Sobolev spaces for the corresponding Galerkin approximation using finite elements on the boundary only.  相似文献   

7.
A system of integral equations for the field and its normal derivative on the boundary in acoustic or potential scattering by a penetrable homogeneous object in arbitrary dimensions is presented. The system contains the operators of the single and double layer potentials, of the normal derivative of the single layer, and of the normal derivative of the double layer potential. It defines a strongly elliptic system of pseudodifferential operators. It is shown by the method of Mellin transformation that a corresponding property, namely a Gårding's inequality in the energy norm, holds also in the case of a polygonal boundary of a plane domain. This yields asymptotic quasioptimal error estimates in Sobolev spaces for the corresponding Galerkin approximation using finite elements on the boundary only.  相似文献   

8.

For a large system of identical particles interacting by means of a potential, we find that a strong large scale flow velocity can induce motions in the inertial range via the potential coupling. This forcing lies in special bundles in the Fourier space, which are formed by pairs of particles. These bundles are not present in the Boltzmann, Euler and Navier–Stokes equations, because they are destroyed by the Bogoliubov–Born–Green–Kirkwood–Yvon formalism. However, measurements of the flow can detect certain bulk effects shared across these bundles, such as the power scaling of the kinetic energy. We estimate the scaling effects produced by two types of potentials: the Thomas–Fermi interatomic potential (as well as its variations, such as the Ziegler–Biersack–Littmark potential), and the electrostatic potential. In the near-viscous inertial range, our estimates yield the inverse five-thirds power decay of the kinetic energy for both the Thomas–Fermi and electrostatic potentials. The electrostatic potential is also predicted to produce the inverse cubic power scaling of the kinetic energy at large inertial scales. Standard laboratory experiments confirm the scaling estimates for both the Thomas–Fermi and electrostatic potentials at near-viscous scales. Surprisingly, the observed kinetic energy spectrum in the Earth atmosphere at large scales behaves as if induced by the electrostatic potential. Given that the Earth atmosphere is not electrostatically neutral, we cautiously suggest a hypothesis that the atmospheric kinetic energy spectra in the inertial range are indeed driven by the large scale flow via the electrostatic potential coupling.

  相似文献   

9.
We find a lower bound for the entropy dissipation of the spatially homogeneous Landau equation with hard potentials in terms of the entropy itself. We deduce from this explicit estimates on the speed of convergence towards equilibrium for the solution of this equation. In the case of so-called overmaxwellian potentials, the convergence is exponential. We also compute a lower bound for the spectral gap of the associated linear operator in this setting.  相似文献   

10.
Two non-classical model interface problems for piecewise homogeneous anisotropic bodies are studied. In both problems on the contact surface jumps of the normal components of displacement and stress vectors are given. In addition, in the first problem (Problem H) the tangent components of the displacement vectors are given from both sides of the contact surface, while in the second one (Problem G) the tangent components of the stress vectors are prescribed on the same surface. The existence and uniqueness theorems are proved by means of the boundary integral equation method, and representations of solutions by single layer potentials are established. In the investigation the general approach of regularization of the first kind of integral equations is worked out for the case of two-dimensional closed smooth manifolds. An equivalent global regularizer operator is constructed explicitly in the form of a singular integro-differential operator.  相似文献   

11.
We consider the boundary value problem of calculating the electrostatic potential for a homogeneous conductor containing finitely many small insulating inclusions. We give a new proof of the asymptotic expansion of the electrostatic potential in terms of the background potential, the location of the inhomogeneities and their geometry, as the size of the inhomogeneities tends to zero. Such asymptotic expansions have already been used to design direct (i.e. noniterative) reconstruction algorithms for the determination of the location of the small inclusions from electrostatic measurements on the boundary, e.g. MUSIC-type methods. Our derivation of the asymptotic formulas is based on integral equation methods. It demonstrates the strong relation between factorization methods and MUSIC-type methods for the solution of this inverse problem.

  相似文献   


12.
We show how to construct the hyperbolic plane with its geodesic flow as the reduction of a three-problem whose potential is proportional to I/Δ2 where I is the moment of inertia of this triangle whose vertices are the locations of the three bodies and Δ is its area. The reduction method follows [11]. Reduction by scaling is only possible because the potential is homogeneous of degree ?2. In trying to extend the assertion of hyperbolicity to the analogous family of planar N-body problems with three-body interaction potentials we run into Mn¨ev’s astounding universality theorem which implies that the extended assertion is doomed to fail.  相似文献   

13.
This paper analyzes the electroosmotic flow fields in heterogeneous microchannels by applying the lattice Poisson–Boltzmann equation. The influences of surface potential, ionic molar concentration, channel height, and driving force fields on fluid velocity are discussed in detail. A scheme for producing vortexes in a straight channel by adjusting the heterogeneous surface potentials and phase angles of the periodic driving force fields is introduced. By distributing the heterogeneous surface potentials at particular positions, we can create vortexes near walls or in the center of the channel. The size, strength, and rotational direction of vortexes are further variable by introducing appropriate phase angles for a single driving force field or for the phase differences between combined driving force fields, such as electric/pressure fields. These obstacle-like vortexes perturb fluids and hinder flow, and thus, may be useful for enhancing micromixer performance.  相似文献   

14.
During deformation of an Al-Mg alloy (AA5754) dynamic strain aging occurs in a certain range of temperatures and strainrates. An extreme manifestation of this phenomenon, usually referred to as the Portevin-Le Chatelier (PLC) effect, consists in the occurrence of strain localisation bands accompanied with discontinuous yielding. The PLC effect stems from dynamic dislocation-solute interactions and results in negative strain-rate sensitivity of the flow stress. The PLC effect is detrimental to the surface quality of sheet metals and also affects the ductility of the material. Since the appearance of the effect strongly depends on the triaxiality of the stress state, three-dimensional finite element simulations are necessary in order to optimize metal forming operations. We present a geometrically nonlinear material model which reproduces the main features of the PLC effect. The material parameters were identified based on experimental data from tensile tests. Special emphasis was put on the critical strain for the onset of PLC effect, ε c , and the statistical characteristics of the stress drop distribution. (© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
The solution of an initial‐boundary value problem for bending of a piecewise‐homogeneous thermoelastic plate with transverse shear deformation is represented as various combinations of single‐layer and double‐layer time‐dependent potentials. The unique solvability of the boundary integral equations generated by these representations is proved in spaces of distributions. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
We prove that the averaged scattering solutions to the Schrödinger equation with short-range electromagnetic potentials (V, A) where V(x) = O(|x|), A(x) = O(|x|), |x| → ∞, ρ > 1, are dense in the set of all solutions to the Schrödinger equation that are in L 2(K) where K is any connected bounded open set in ? n ,n ≥ 2, with smooth boundary. We use this result to prove that if two short-range electromagnetic potentials (V 1, A 1) and (V 2, A 2) in ? n , n ≥ 3, have the same scattering matrix at a fixed positive energy and if the electric potentials V j and the magnetic fields F j : = curl A j , j = 1, 2, coincide outside of some ball they necessarily coincide everywhere. In a previous paper of Weder and Yafaev the case of electric potentials and magnetic fields that are asymptotic sums of homogeneous terms at infinity was studied. It was proven that all these terms can be uniquely reconstructed from the singularities in the forward direction of the scattering amplitude at a fixed positive energy. The combination of the new uniqueness result of this paper and the result of Weder and Yafaev implies that the scattering matrix at a fixed positive energy uniquely determines electric potentials and magnetic fields that are a finite sum of homogeneous terms at infinity, or more generally, that are asymptotic sums of homogeneous terms that actually converge, respectively, to the electric potential and to the magnetic field.  相似文献   

17.
This contribution focuses on the sequential laminate-based modelling approach for the numerical simulation of the complex electromechanical material behaviour of ferroelectric single crystals. The construction of engineered domain configurations by using the method of sequential lamination in order to study the domain evolution and polarisation switching in ferroelectric single crystals has recently been carried out in the works of [1–4]. By fulfilling the kinematic and polarisation compatibility conditions between the domain structures in a crystal, the proposed laminate-based formulation is governed by an energy-enthalpy function and by a dissipation potential. The mixed energy-enthalpy, written in terms of the total strains, electric field and a set of internal variables, here the multi-rank laminate volume fractions, governs the dissipative electromechanical response of the ferroelectric crystal, whereas the rate-dependent dissipation potential formulated in terms of the flux of the internal variables describes the time-dependent evolution of the multi-rank laminate volume fractions, subjected to inequality constraints. The model reproduces experimentally observed hysteresis and butterfly curves, characteristic for single crystal ferroelectric materials, when subjected to homogeneous electromechanical loading conditions. (© 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
We show that if the potential is proportional to an energy-independent continuous parameter, then there exist 15 choices for the coordinate transformation that provide energy-independent potentials whose shape is independent of that parameter and for which the one-dimensional stationary Schrödinger equation is solvable in terms of the confluent Heun functions. All these potentials are also energy-independent and are determined by seven parameters. Because the confluent Heun equation is symmetric under transposition of its regular singularities, only nine of these potentials are independent. Five of the independent potentials are different generalizations of either a hypergeometric or a confluent hypergeometric classical potential, one potential as special cases includes potentials of two hypergeometric types (the Morse confluent hypergeometric and the Eckart hypergeometric potentials), and the remaining three potentials include five-parameter conditionally integrable confluent hypergeometric potentials. Not one of the confluent Heun potentials, generally speaking, can be transformed into any other by a parameter choice.  相似文献   

19.
In this article, we study the increasing stability property for the determination of the potential in the Schrödinger equation from partial data. We shall assume that the inaccessible part of the boundary is flat, and homogeneous boundary condition is prescribed on this part. In contrast to earlier works, we are able to deal with the case when potentials have some Sobolev regularity and also need not be compactly supported inside the domain.  相似文献   

20.
We propose a new method of determining the stress intensity factors based on the representation of rectilinear cracks as elliptic holes with a zero axis and using the classical complex potentials. We calculate the stress intensity factors in terms of the limiting values of the potentials as the points tend to the ends of a crack. The efficiency of the method is shown using examples. Translated fromTeoreticheskaya i Prikladnaya Mekhanika, No. 24, 1993, pp. 27–33.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号