首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Stars of~8-100 M_⊙end their lives as core-collapse supernovae(SNe). In the process they emit a powerful burst of neutrinos,produce a variety of elements, and leave behind either a neutron star or a black hole. The wide mass range for SN progenitors results in diverse neutrino signals, explosion energies, and nucleosynthesis products. A major mechanism to produce nuclei heavier than iron is rapid neutron capture, or the r process. This process may be connected to SNe in several ways. A brief review is presented on current understanding of neutrino emission, explosion, and nucleosynthesis of SNe.  相似文献   

2.
Neutron stars are known to show an accelerated spin-up of their rotational frequency on a short time scale of around 40 s, called a “glitch” in the neutron star. These neutron star glitches can emit short-duration transient gravitational wave signals as f-mode oscillations at frequencies between 1.5 and 3 kHz and damping times of less than a few seconds. The observed rate of neutron star glitches are currently limited by their electromagnetic observations. There could be a population of the isolated neutron stars in the galaxy for which there is no electromagnetic observation, but they can produce gravitational wave signals. Here, the sensitivity of the generic all-sky search for short-duration transients towards neutron star glitches during the Advanced LIGO and Virgo's third observing run using the Coherent WaveBurst algorithm is presented. The prospects of detecting signals from such glitching neutron stars for the upcoming fourth and fifth observing runs of Advanced LIGO and Virgo detectors are also described.  相似文献   

3.
We review current research on minerals using inelastic neutron scattering and lattice dynamics calculations. Inelastic neutron scattering studies in combination with first principles and atomistic calculations provide a detailed understanding of the phonon dispersion relations, density of states and their manifestations in various thermodynamic properties. The role of theoretical lattice dynamics calculations in the planning, interpretation and analysis of neutron experiments are discussed. These studies provide important insights in understanding various anomalous behaviour including pressure-induced amorphization, phonon and elastic instabilities, prediction of novel high pressure phase transitions, high pressure-temperature melting, etc.   相似文献   

4.
No fast neutron therapy facility has been built with optimized beam quality based on a thorough understanding of the neutron spectrum and its resulting biological effectiveness. A study has been initiated to provide the information necessary for such an optimization. Monte Carlo studies will be used to simulate neutron energy spectra and LET spectra. These studies will be bench-marked with data taken at existing fast neutron therapy facilities. Results will also be compared with radiobiological studies to further support beam quality optimization. These simulations, anchored by this data, will then be used to determine what parameters might be optimized to take full advantage of the unique LET properties of fast neutron beams.This paper will present preliminary work in generating energy and LET spectra for the Fermilab fast neutron therapy facility.  相似文献   

5.
Superpersistent chaotic transients are characterized by an exponential-like scaling law for their lifetimes where the exponent in the exponential dependence diverges as a parameter approaches a critical value. So far this type of transient chaos has been illustrated exclusively in the phase space of dynamical systems. Here we report the phenomenon of noise-induced superpersistent transients in physical space and explain the associated scaling law based on the solutions to a class of stochastic differential equations. The context of our study is advective dynamics of inertial particles in open chaotic flows. Our finding makes direct experimental observation of superpersistent chaotic transients feasible. It also has implications to problems of current concern such as the transport and trapping of chemically or biologically active particles in large-scale flows.  相似文献   

6.
采用国际开源程序包Geant4,构建高能质子束轰击加速器驱动次临界系统(ADS)散裂靶的物理模型,模拟计算质子轰击液态金属铅、铅-铋合金和汞靶的泄漏中子谱分布,以及计算不同能量质子对应的铅靶泄漏中子产额和轴向积分分布,获得1 Ge V质子对应的铅圆柱靶优化参数,考虑入射质子的利用率和整个堆芯的体积质量,优化靶半径范围为16~24 cm,靶高为100 cm,相关研究结果可为(ADS)散裂靶的物理和工程设计提供理论依据。  相似文献   

7.
朱剑钰  黄孟  赵德山 《强激光与粒子束》2022,34(2):026015-1-026015-6
主动中子多重性计数测量方法是常用的核材料质量无损测量方法,已广泛应用于核材料衡算、核安保测量与军控核查等领域。我们通过对JMCT中子-光子输运程序的二次开发,实现了对经典点模型铀样品质量估算实验的数值模拟,并提出了改进的铀样品质量计算公式。该算法可以显著降低本实验中源-样品耦合与源中子反照等作用对铀样品质量估算精度的影响。建立了主动中子多重性计数测量探测系统模型和32个铀样品半球壳模型,模拟得到了与铀样品距离不同的DT源和AmLi源主动中子多重性计数,利用数值模拟手段检验了质量估算算法的有效性。数值模拟结果表明,改进的铀质量估算算法可以使质量估算的平均偏差率降低到10%以下。  相似文献   

8.
Test results for model circuit breakers operating at high current levels and with large diameter nozzles show evidence of pronounced pressure transients although the circuit breaker nozzle is not severely blocked. The magnitude and duration of these transients are sufficient to affect the arc properties and hence influence arc control during the peak current phase and to influence arc extinction at current zero. However, despite their inherent importance there exists only limited information concerning such pressure variations. The purpose of this contribution is to identify the nature and sources of the transients, to establish typical thresholds for the onset of the transients, and to determine the influence of different operating conditions upon the transients. Measurements of pressure and thermal mantle variations are used in conjunction with an electrical analog model of the aerodynamic test facility to show that the pressure transients arise not only from arc generated flow impedance effects but also aerodynamic resonances. The resonant pressure transients are shown to be pronounced during the high current phase even below the thermal blocking threshold. Above the threshold, excitation of negative increment resonance following current peak produces depressed pressures during the current-zero period which may lead to a deterioration in circuit breaker performance. Higher frequency resonances also occur and become more pronounced with electrode wear. Activation of such resonances is symptomatic of axisymmetric arc instabilities which also may cause a deterioration in performance.  相似文献   

9.
The concept of limiting mass, introduced by Chandrasekhar in case of white dwarfs, plays an important role in the formation and stability of compact objects such as neutron stars and black holes. Like white dwarfs, neutron stars have their own mass limit, and a compact configuration would progress from one family to the next, more dense one once a mass limit is crossed. The mass limit of neutron stars depends on the nature of nuclear forces at very high density, which has so far not been determined conclusively. This article reviews how observational determinations of the properties of neutron stars are starting to impose significant constraints on the state of matter at high density.  相似文献   

10.
Effects of excluded volume of nucleons on nuclear matter are studied, and the nuclear properties that follow from different relativistic mean-field model parametrizations are compared. We show that, for all tested parametrizations, the resulting volume energy al and the symmetry energy J are around the acceptable values of 16 MeV and 30 MeV, and the density symmetry L is around 100 MeV. On the other hand, models that consider only linear terms lead to incompressibility Ko much higher than expected. For most parameter sets there exists a critical point (pc, δc), where the minimum and the maximum of the equation of state are coincident and the incompressibility equals zero. This critical point depends on the excluded volume parameter r. If this parameter is larger than 0.5 fm, there is no critical point and the pure neutron matter is predicted to be bound. The maximum value for neutron star mass is 1.85M⊙, which is in agreement with the mass of the heaviest observed neutron star 4U0900-40 and corresponds to r = 0.72 fm. We also show that the light neutron star mass (1.2M⊙) is obtained for r ≌ 0.9 fro.  相似文献   

11.
利用非对称核物质状态方程对中子星的质量和半径的研究   总被引:1,自引:0,他引:1  
在温度、密度及同位旋相关的核物质状态方程的基础上,通过求解Tol-man-Oppenheimer?Volkoff方程得到了中子星的质量与中心密度的关系,发现随着中心密度的变化,中子星存在一个最大质量.同时计算结果表明,中子星的最大质量与核物质状态方程的不可压缩系数、有效质量及对称能强度系数等密切相关.对中子星半径的研究表明,较硬的核物质状态方程给出的中子星半径较大,而且较大的对称能强度系数和较大的核子有效质量也会给出较大的中子星半径.  相似文献   

12.
A general upper bound is derived on the total energy in incoherent nonthermal transients at frequency nu from relativistic fireballs with bulk Lorentz factors gamma and observed duration Deltat, and shown to be about 10(-2)[gammanuDeltat](3) ergs. It is suggested that detection in the optical can be achieved with the next generation of ground based gamma ray telescopes and/or small optical telescopes. Phenomena within the Galaxy such as accretion disk flares and neutron star magnetospheric discharges might be discovered in this way.  相似文献   

13.
In intermediate energy nucleus-nucleus collisions, neutron production at forward angles is observed to occur with a Gaussian shape that is centered near the beam energy and extends to energies well above that of the beam. This paper presents an abrasion-ablation model for making quantitative predictions of the neutron spectrum. To describe neutrons produced from the abrasion step of the reaction where the projectile and target overlap, we use the Glauber model and include effects of final-state interactions. We then use the prefragment mass distribution from abrasion with a statistical evaporation model to estimate the neutron spectrum resulting from ablation. Measurements of neutron production from Ne and Nb beams are compared with calculations, and good agreement is found.  相似文献   

14.
《Physics Reports》1987,156(3):111-146
Advances in the infrared and radio observational techniques in the last decade have led to a revolution in our understanding of the late stages of stellar evolution. Intermediate (1–8 M) mass stars are found to be undergoing rapid mass loss in the form of a stellar wind during the asymptotic-giant-branch after the exhaustion of helium burning in the core. Significant fraction of the original stellar mass can be lost in short time scales of < 106 yr. The ejected mass constitutes the major component of matter returned by stars to the interstellar medium. Since such material has been heavily nuclear processed, they also represent the dominant mechanism of chemical enrichment of the Galaxy. The high rate of mass loss implies that the majority of Population I stars end their evolution as planetary nebulae and white dwarfs rather than superovae and neutron stars.In this review, we summarize recent observational methods in the determination of the mass loss rate and the associated physical parameters of the stellar wind. Since the observed mass loss rate greatly exceeds the nuclear burning rate, we also discuss the theoretical models on how such mass loss affects the asymptotic giant branch evolution. A scenario is presented on how red giants evolve into planetary nebulae, a process which has been very poorly understood until recently. Conjectures on how the current evolutionary “missing link” - the proto-planetary nebulae - could be identified are also considered.  相似文献   

15.
《Nuclear Physics A》1995,588(1):c365-c369
Hot neutron stars at birth are compared with usual cold neutron stars and discussed concerning the energy release and the spin-up in the cooling stage. It is remarked that new constraints are imposed on the critical mass and the maximum rotation rate of cold neutron stars by the consideration of their hot stage.  相似文献   

16.
We demonstrate that the largest measured mass of a neutron star establishes an upper bound to the energy density of observable cold baryonic matter. An equation of state-independent expression satisfied by both normal neutron stars and self-bound quark matter stars is derived for the largest energy density of matter inside stars as a function of their masses. The largest observed mass sets the lowest upper limit to the density. Implications from existing and future neutron star mass measurements are discussed.  相似文献   

17.
We consider the astrophysical constraints on the gravitational-wave-driven r-mode instability in accreting neutron stars in low-mass x-ray binaries. We use recent results on superfluid and superconducting properties to infer the core temperature in these neutron stars and show the diversity of the observed population. Simple theoretical models indicate that many of these systems reside inside the r-mode instability region. However, this is in clear disagreement with expectations, especially for the systems containing the most rapidly rotating neutron stars. The inconsistency highlights the need to reevaluate our understanding of the many areas of physics relevant to the r-mode instability. We summarize the current status of our understanding, and we discuss directions for future research which could resolve this dilemma.  相似文献   

18.
The interaction of high-energy space radiation with spacecraft materials generates a host of secondary particles, some, such as neutrons, are more biologically damaging and penetrating than the original primary particles. Before committing astronauts to long term exposure in such high radiation environments, a quantitative understanding of the exposure and estimates of the associated risks are required. Energetic neutrons are traditionally difficult to measure due to their neutral charge. Measurement methods have been limited by mass and weight requirements in space to nuclear emulsion, activation foils, a limited number of Bonner spheres, and TEPCs. Such measurements have had limited success in quantifying the neutron component relative to the charged components. We will show that a combination of computational models and experimental measurements can be used as a quantitative tool to evaluate the radiation environment within the Shuttle, including neutrons. Comparisons with space measurements are made with special emphasis on neutron sensitive and insensitive devices.  相似文献   

19.
We reinterpret Landau-Migdal Fermi liquid theory of nuclear matter as an effective chiral field theory with a Fermi surface. The effective field theory is formulated in terms of a chiral Lagrangian with its mass and coupling parameters scaling à la Brown-Rho and with the Landau-Migdal parameters identified as the fixed points of the field theory. We show how this mapping works out for response functions to the EM vector current and, then using the same reasoning, make a prediction on nuclear axial current, in particular on the enhanced axial-charge transitions in heavy nuclei. We speculate on how to extrapolate the resulting theory, which appears to be sound both theoretically and empirically up to normal nuclear-matter density r0, to hitherto unexplored higher density regime relevant to relativistic heavy-ion processes and to cold compact (neutron) stars.  相似文献   

20.
The creation of transuranium isotopes based on intense pulsed nucleosynthesis is considered. The model of multiple neutron captures takes into account the variation of the (n, γ)-cross section resulting from adiabatic expansion of the explosive nucleosynthesis area. The calculated yields of transuranium isotopes obtained under conditions close to a “Par” nuclear explosion, enable us to improve the agreement between the model results and the experimental data within the wide range of atomic mass number A = 248–257, provided the adiabatic conditions are taken into account.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号