首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An experimental study of the formation of mixed van der Waals oxygen-isoprene complexes, generated in an expanding supersonic helium-oxygen-isoprene jet at various stagnation pressures and at diverse oxygen and isoprene concentrations, has been performed. To measure the composition and distribution of the partial densities of the individual components, molecular beam mass spectrometry was adapted to pulsed modes of gas source operation. The particularities of applying mass spectrometry to studying clustered isoprene streams in a pulsed mode have been discussed. The composition of small clusters generated in a free supersonic jet has been checked for dependencies upon the initial mixture composition and stagnation pressure. The mechanism of nucleation has been identified for different partial concentrations of impurities in the helium stream. It has been shown that, even at a 0.3% concentration of isoprene in the mixture, nucleation starts with the formation of hydrocarbon complexes. The specific features of the dissociative ionization of van der Waals complexes, consisting of pure isoprene and mixed complexes, have been discussed. The conditions needed for the formation of binary oxygen-isoprene van der Waals complexes have been identified.  相似文献   

2.
The structures, stabilities and electronic properties of small-sized Ren (n ≤ 8) clusters have been systematically investigated by density-functional theory. The lowest-energy structures of Ren clusters favor 3-dimensional configuration. The results of second-order difference of energies indicate that Re4 and Re6 possess relatively higher stability in structure. Importantly, our theoretical results of electron affinity are in agreement with experimental values, which can be responsible for the reliability of the structures.  相似文献   

3.
The ionization potentials in alkali metal clusters are calculated using a jellium-background model for positive-ion cores and the local-spin-density functional approximation for valence electrons. The computed results compare reasonably with previous experimental and theoretical values in the cases of Li, Na, K and Cs.  相似文献   

4.
Nano-droplet growth in a supersaturated vapor has been investigated in a gas aggregation source using laser-ionization time-of-flight mass spectrometry. During its propagation into an atomic vapor, a small particle grows by sticking atoms on its surface. This accretion process has been highlighted through the clustering of homogeneous particles Mn and heterogeneous Mn(M2O) and Mn(MOH)2 particles in a metallic vapor and a helium buffer gas (M = Na or K). A modelization is introduced so as to connect the measured cluster mass distributions to the pertinent physical parameters. The mass distribution width is particularly sensitive to the efficiency of the first steps in the growth sequence. We used this property to compare the ability of this vapor-condensed matter phase transition to occur around various homogeneous and heterogeneous nucleation seeds.  相似文献   

5.
Calculations of the quantum structures describing the initial solvation shells of bosonic helium atoms around a polar, ionic system like LiH+ are reported, together with the corresponding quantum energies. The calculations were carried out using the Diffusion Monte Carlo (DMC) approach and parametric trial functions. Its final radial and angular distributions for clusters of varying size are analysed and discussed. The solvation of this ionic dopant is shown to occur in a way which is strongly affected by the orientational induction forces between the latter molecule and the solvent atoms, indicating the onset of “snowball" structures at the location of the dopant and the clear distinction between “heliophilic" and “heliophobic" regions of microsolvation.  相似文献   

6.
7.
The most stable structures of gaseous Si m C n (3 ⩽ n+m ⩽ 6) clusters in their ground electronic states are determined with the high level electronic correlation method QCISD(T)/g3large. Thermodynamic properties on heat capacity (C p,m Θ), entropy (S m Θ), Gibbs energy function (−[G ΘH Θ(T r )]/T) and enthalpy function (H ΘH Θ(T r )) are predicted with standard statistical thermodynamics using the structure parameters and vibrational frequencies obtained with B3PW91/6-31G(d) method combined with the electronic excitation energies determined with time dependent density functional (TD DFT) method at B3PW91/6-31G(d) level. The electronic energies are calculated with the accurate model chemistry method at G3(QCI) level of theory and the Δ f H m Θ (0 K), Δ f H m Θ (298.15 K) and Δ f G m Θ (298.15 K) values are predicted. The heat capacities C p,m Θ(T) as a function of temperature within 298.15-2000 K are fitted into analytical equations. The thermodynamic functions at higher temperatures are determined classically by using these equations. Most of the results obtained in this work are consistent with the available experiments.  相似文献   

8.
Banded spherulite patterns are simulated in two dimensions by means of a coupled logistic map lattice model. Both target pattern and spiral pattern which have been proved to be existent experimentally in banded spherulite are obtained by choosing suitable parameters in the model. The simulation results also indicate that the band spacing is decreased with the increase of parameter μ in the logistic map and increased with the increase of the coupling parameter ε, which is quite similar to the results in some experiments. Moreover, the relationship between the parameters and the corresponding patterns is obtained, and the target patterns and spiral patterns are distinguished for a given group of initial values, which may guide the study of banded spherulite.  相似文献   

9.
We study the effect of recycled noise, generated by the superposition of a primary Gaussian noise source with a second component of constant delay, in a parameter region below the threshold of supercritical Hopf bifurcation, by focussing on the performance of noise induced oscillations and coherence resonance. For fixed noise intensity, the amplitude and signal-to-noise ratio of the oscillation show periodic dependences on the delay time. The optimal noise intensity for the occurrence of coherence resonance also shows a periodic dependence on the delay. A theoretical analysis based on the stochastic normal form theory is presented, which qualitatively reproduces the simulation results with good agreement. This work presents a possible strategy for controlling noise induced oscillations and coherence resonance by deliberately adjusting the parameters of the recycled noise.  相似文献   

10.
We present two complementary techniques that provide detailed diagnostics of supersonic beams involving several species. First, surface scattering, together with quadrupole mass spectrometer detection, yields the monomer percentage for each species within the beam. Second, analyses of beam profiles for different masses after scattering by a buffer gas permit determination of mixed cluster presence and, if any, of cluster sizes and compositions. The two techniques are applied to supersonic expansions of an argon-nitrogen mixture. We discuss the results that provide new insight in binary nucleation processes. Received: 6 October 1997 / Revised: 4 November 1997 / Accepted: 13 November 1997  相似文献   

11.
In this paper, we present the study of the global classical dynamics of a rigid diatomic molecule in the presence of combined electrostatic and nonresonant polarized laser fields. In particular, we focus on the collinear field case, which is an integrable system because the z-component Pφ of the angular momentum is conserved. The study involves the complete analysis of the stability of the equilibrium points, their bifurcations and the evolution of the phase flow as a function of the field strengths and Pφ. Finally, the influence of the bifurcations on the orientation of the quantum states is studied.  相似文献   

12.
We here discuss the process of opinion formation in an open community where agents are made to interact and consequently update their beliefs. New actors (birth) are assumed to replace individuals that abandon the community (deaths). This dynamics is simulated in the framework of a simplified model that accounts for mutual affinity between agents. A rich phenomenology is presented and discussed with reference to the original (closed group) setting. Numerical findings are supported by analytical calculations.  相似文献   

13.
The solid-liquid phase transitions of Lennard-Jones clusters LJN (N=39–55) were simulated by a microcanonical molecular dynamics method using Lennard-Jones potential, and their thermodynamic quantities were calculated. The caloric curves of clusters (except N=42) have S-bend. To understand this behaviour, configurational and total entropies were evaluated, and dents on the entropy curves were taken as a sign of negative heat capacity. The heat capacities were evaluated for N=39–55 clusters using configurational entropy data. The potential energy distributions have bimodal behaviour for all clusters in the given range at the melting temperature. The distinct melting behaviour of LJ42 was explained by the topology of the potential energy surface by examining the isomer distributions at phase transitions for LJ39-LJ55. The isomer distributions were found to be a useful way to interpret this behaviour and melting dynamics in general. Melting temperature, latent heat and entropy change upon melting values were reported and are consistent with literature values and values calculated from bulk thermodynamic properties. The dependence of these quantities on the size of the clusters was examined and it is found that latent heat is the key quantity to determine the magic numbers.  相似文献   

14.
Systematic study of small BN clusters   总被引:2,自引:0,他引:2  
We performed a systematic investigation of the small BxNy (x + y? 6) clusters using the ab initio Hartree-Fock scheme plus second-order perturbation theory. The nature of the potential energy surface extrema are analyzed through analytical total energy second derivatives. Ionization potentials, binding energies and the stability against some possible reaction mechanisms are calculated. Based on these results we propose that the growing process for these clusters is mainly due to the successive incorporation of BN molecules. A discussion of some mass spectrometry experimental results is also presented. Received 2 October 2000  相似文献   

15.
The geometrical structure of ground state Ban clusters (n =2-14) has been predicted from various types of calculations including two ab initio approaches used for the smaller sizes namely HF+MP2( n =2-6), DFT (LSDA)( n =2-6, 9) and one model approach HF+pairwise dispersion used for all sizes investigated here. The lowest energy configurations as well as some isomers have been investigated. The sizes n =4, 7 and 13 are predicted to be the relatively more stable ones and they correspond to the three compact structures: the tetrahedron, the pentagonal bipyramid and the icosahedron. The growth behavior from Ba7 to Ba13 appears to be characterized by the addition of atoms around a pentagonal bipyramid leading to the icosahedral structure of Ba13 which is consistent with the observed size-distribution of barium clusters. Values for vertical ionization potentials calculated for n =2-5 at the CI level are seen to be in quite good agreement with recent measures. Received: 14 May 1997 / Received in final form: 2 February 1998 / Accepted: 27 February 1998  相似文献   

16.
Synchrotron radiation-based experimental techniques are largely employed for the characterization of the reactivity of finite size systems; in particular, x-ray absorption spectroscopy (XAS) is a suitable tool to shed light on the local electronic structure and chemical status of atoms in nano-objects, as it is very sensitive to the local bonding environment of the probed site. In supported clusters intrinsic properties and reactivity are largely distorted and obscured by the changes imposed by the growth procedure and by the influence of the substrate, so the attainability of experiments on free clusters reacting with species in the gas phase is a primary goal in the development of cluster science. In this paper we report a proof of principle of the applicability of gas phase XAS technique to titanium and titanium oxide, hydride and hydrate systems. Experiments are performed by coupling a pulsed microplasma cluster source (PMCS) with a third generation synchrotron light source, and measuring the intensity of the electron yield coming from the interaction of VUV photons with the clusters seeded in a supersonic beam.  相似文献   

17.
We have explored the lowest doublet and quartet potential energy surfaces (PES) for the reaction of gallium trimer with H2. This reaction was studied experimentally by Margrave and co-workers in a noble gas matrix. The detailed reaction paths ending up with the low-energy Ga3H2 hydride isomers have been predicted based on the high level ab initio coupled-cluster calculations (CCSD(T)) with large basis set. We have found that the reaction occuring on the lowest doublet PES is described by the activation barrier for H2 cleavage of about 15 kcal/mol, consistent with experiment. In the most stable Ga3H2 hydride structure, whose formation is exothermic by 15 kcal/mol, both H atoms assume three-fold bridged positions. The diterminal planar structure of Ga3H2, proposed experimentally from the observed IR spectra, is found to be only 1 kcal/mol less stable than the dibridged form.  相似文献   

18.
We consider a type of intermittent behavior that occurs as the result of the interplay between dynamical mechanisms giving rise to type-II intermittency and random dynamics. We analytically deduce the law for the distribution of the laminar phases, which has never been obtained hitherto. The already known dependence of the mean length of the laminar phases on the criticality parameter [Phys. Rev. E 68, 036203 (2003)] follows as a corollary of the carried out research. We also prove that this dependence obtained earlier under the assumption of the fixed form of the reinjection probability does not depend on the relaminarization properties, and, correspondingly, the obtained expression of the mean length of the laminar phases on the criticality parameter remains correct for different types of the reinjection probability.  相似文献   

19.
Photoionization of rare gas clusters in the innervalence shell region has been investigated using threshold photoelectron and photoion spectrometers and synchrotron radiation. Two classes of states are found to play an important role: (A) valence states, correlated to dissociation limits involving an ion with a hole in its innervalence ns shell, (B) Rydberg states correlated to dissociation limits involving an ion with a hole in its outervalence np shell plus an excited neutral atom. In dimers, class A states are “bright”, that is, accessible by photoionization, and serve as an entrance step to form the class B “dark” states; this character fades as the size of the cluster increases. In the dimer, the “Mulliken” valence state is found to present a shallow potential well housing a few vibrational levels; it is predissociated by the class B Rydberg states. During the predissociation a remarkable energy transfer process is observed from the excited ion that loses its innershell electron to its neutral partner. Received: 10 February 1998 / Revised: 17 July 1998 / Accepted: 31 July 1998  相似文献   

20.
We investigate a class of nonlinear wave equations subject to periodic forcing and noise, and address the issue of energy optimization. Numerically, we use a pseudo-spectral method to solve the nonlinear stochastic partial differential equation and compute the energy of the system as a function of the driving amplitude in the presence of noise. In the fairly general setting where the system possesses two coexisting states, one with low and another with high energy, noise can induce intermittent switchings between the two states. A striking finding is that, for fixed noise, the system energy can be optimized by the driving in a form of resonance. The phenomenon can be explained by the Langevin dynamics of particle motion in a double-well potential system with symmetry breaking. The finding can have applications to small-size devices such as microelectromechanical resonators and to waves in fluid and plasma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号