首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
This paper proposes two parallel algorithms which are improved by heuristics for a bi-objective flowshop scheduling problem with sequence-dependent setup times in a just-in-time environment. In the proposed algorithms, the population will be decomposed into the several sub-populations in parallel. Multiple objectives are combined with min–max method then each sub-population evolves separately in order to obtain a good approximation of the Pareto-front. After unifying the obtained results, we propose a variable neighborhood algorithm and a hybrid variable neighborhood search/tabu search algorithm to improve the Pareto-front. The non-dominated sets obtained from our proposed algorithms, a genetic local search and restarted iterated Pareto greedy algorithm are compared. It is found that most of the solutions in the net non-dominated front are yielded by our proposed algorithms.  相似文献   

2.
In this work, we present a method, called Two-Phase Pareto Local Search, to find a good approximation of the efficient set of the biobjective traveling salesman problem. In the first phase of the method, an initial population composed of a good approximation of the extreme supported efficient solutions is generated. We use as second phase a Pareto Local Search method applied to each solution of the initial population. We show that using the combination of these two techniques: good initial population generation plus Pareto Local Search gives better results than state-of-the-art algorithms. Two other points are introduced: the notion of ideal set and a simple way to produce near-efficient solutions of multiobjective problems, by using an efficient single-objective solver with a data perturbation technique.  相似文献   

3.
This paper proposes a new tabu search algorithm for multi-objective combinatorial problems with the goal of obtaining a good approximation of the Pareto-optimal or efficient solutions. The algorithm works with several paths of solutions in parallel, each with its own tabu list, and the Pareto dominance concept is used to select solutions from the neighborhoods. In this way we obtain at each step a set of local nondominated points. The dispersion of points is achieved by a clustering procedure that groups together close points of this set and then selects the centroids of the clusters as search directions. A nice feature of this multi-objective algorithm is that it introduces only one additional parameter, namely, the number of paths. The algorithm is applied to the permutation flowshop scheduling problem in order to minimize the criteria of makespan and maximum tardiness. For instances involving two machines, the performance of the algorithm is tested against a Branch-and-Bound algorithm proposed in the literature, and for more than two machines it is compared with that of a tabu search algorithm and a genetic local search algorithm, both from the literature. Computational results show that the heuristic yields a better approximation than these algorithms.  相似文献   

4.
The paper presents an effective version of the Pareto memetic algorithm with path relinking and efficient local search for multiple objective traveling salesperson problem. In multiple objective Traveling salesperson problem (TSP), multiple costs are associated with each arc (link). The multiple costs may for example correspond to the financial cost of travel along a link, time of travel, or risk in the case of hazardous materials. The algorithm searches for new good solutions along paths in the decision space linking two other good solutions selected for recombination. Instead of a simple local search it uses short runs of tabu search based on the steepest version of the Lin–Kernighan algorithm. The efficiency of local search is further improved by the techniques of candidate moves and locked arcs. In the final step of the algorithm the neighborhood of each potentially Pareto-optimal solution is searched for new solutions that could be added to this set. The algorithm is compared experimentally to the state-of-the-art algorithms for multiple objective TSP.  相似文献   

5.
Increasingly, tourists are planning trips by themselves using the vast amount of information available on the Web. However, they still expect and want trip plan advisory services. In this paper, we study the tour planning problem in which our goal is to design a tour trip with the most desirable sites, subject to various budget and time constraints. We first establish a framework for this problem, and then formulate it as a mixed integer linear programming problem. However, except when the size of the problem is small, say, with less than 20–30 sites, it is computationally infeasible to solve the mixed-integer linear programming problem. Therefore, we propose a heuristic method based on local search ideas. The method is efficient and provides good approximation solutions. Numerical results are provided to validate the method. We also apply our method to the team orienteering problem, a special case of the tour planning problem which has been considered in the literature, and compare our method with other existing methods. Our numerical results show that our method produces very good approximation solutions with relatively small computational efforts comparing with other existing methods.  相似文献   

6.
The purpose of this article is to describe an efficient search heuristic for the Maximum Edge-weighted Subgraph (MEwS) problem. This problem requires to find a subgraph such that the sum of the weights associated with the edges of the subgraph is maximized subject to a cardinality constraint. In this study a tabu search heuristic for the MEwS problem is proposed. Different algorithms to obtain an initial solution are presented. One neighborhood search strategy is also proposed. Preliminary computational results are reported for randomly generated test problems of MEwS problem with different densities and sizes. For most of test problems, the tabu search heuristic found good solutions. In addition, for large size test problems, the tabu search outperformed the local search heuristic appearing in the literature.  相似文献   

7.
In this paper we propose a general variable neighborhood search heuristic for solving the uncapacitated single allocation p-hub center problem (USApHCP). For the local search step we develop a nested variable neighborhood descent strategy. The proposed approach is tested on benchmark instances from the literature and found to outperform the state-of-the-art heuristic based on ant colony optimization. We also test our heuristic on large scale instances that were not previously considered as test instances for the USApHCP. Moreover, exact solutions were reached by our GVNS for all instances where optimal solutions are known.  相似文献   

8.
We study the one-machine scheduling problem with release dates and we look at several objective functions including total (weighted) tardiness and total (weighted) completion time. We describe dominance rules for these criteria, as well as techniques for using these dominance rules to build heuristic solutions. We use them to improve certain well-known greedy heuristic algorithms from the literature. Finally, we introduce a Tabu Search method with a neighborhood based on our dominance rules. Experiments show the effectiveness of our techniques in obtaining very good solutions for all studied criteria.  相似文献   

9.
This paper presents a hybrid iterated local search (ILS) algorithm for the maximum weight independent set (MWIS) problem, a generalization of the classical maximum independent set problem. Two efficient neighborhood structures are proposed and they are explored using the variable neighborhood descent procedure. Moreover, we devise a perturbation mechanism that dynamically adjusts the balance between intensification and diversification during the search. The proposed algorithm was tested on two well-known benchmarks (DIMACS-W and BHOSLIB-W) and the results obtained were compared with those found by state-of-the-art heuristics and exact methods. Our heuristic outperforms the best-known heuristic for the MWIS as well as the best heuristics for the maximum weight clique problem. The results also show that the hybrid ILS was capable of finding all known optimal solutions in milliseconds.  相似文献   

10.
We consider a generalization of the well-known capacitated facility location problem with single source constraints in which customer demand contains a flexible dimension. This work focuses on providing fast and practically implementable optimization-based heuristic solution methods for very large scale problem instances. We offer a unique approach that utilizes a high-quality efficient heuristic within a neighborhood search to address the combined assignment and fixed-charge structure of the underlying optimization problem. We also study the potential benefits of combining our approach with a so-called very large-scale neighborhood search (VLSN) method. As our computational test results indicate, our work offers an attractive solution approach that can be tailored to successfully solve a broad class of problem instances for facility location and similar fixed-charge problems.  相似文献   

11.
We introduce the prize-collecting generalized minimum spanning tree problem. In this problem a network of node clusters needs to be connected via a tree architecture using exactly one node per cluster. Nodes in each cluster compete by offering a payment for selection. This problem is NP-hard, and we describe several heuristic strategies, including local search and a genetic algorithm. Further, we present a simple and computationally efficient branch-and-cut algorithm. Our computational study indicates that our branch-and-cut algorithm finds optimal solutions for networks with up to 200 nodes within two hours of CPU time, while the heuristic search procedures rapidly find near-optimal solutions for all of the test instances.  相似文献   

12.
In this paper, we present the travelling salesperson problem with hotel selection (TSPHS), an extension of the TSP with a number of interesting applications. We present a mathematical formulation, explain the difference with related optimization problems and indicate what makes this problem inherently more difficult. We develop a simple but efficient heuristic that uses two constructive initialization procedures and an improvement procedure consisting of several neighbourhood search operators designed specifically for this problem, as well as some typical neighbourhoods from the literature. We generate several benchmark instances of varying sizes and compare the performance of our heuristic with CPLEX (10.0). We also generate some problems with known optimal solutions and use these to further demonstrate that our heuristic achieves good results in very limited computation times.  相似文献   

13.
The Far From Most Strings Problem (FFMSP) asks for a string that is far from as many as possible of a given set of strings. All the input and the output strings are of the same length, and two strings are far if their Hamming distance is greater than or equal to a given threshold. FFMSP belongs to the class of sequence consensus problems which have applications in molecular biology, amongst others. FFMSP is NP-hard. It does not admit a constant-ratio approximation either, unless P=NP. In the last few years, heuristic and metaheuristic algorithms have been proposed for the problem, which use local search and require a heuristic, also called an evaluation function, to evaluate candidate solutions during local search. The heuristic function used, for this purpose, in these algorithms is the problem’s objective function. However, since many candidate solutions can be of the same objective value, the resulting search landscape includes many points which correspond to local maxima. In this paper, we devise a new heuristic function to evaluate candidate solutions. We then incorporate the proposed heuristic function within a Greedy Randomized Adaptive Search Procedure (GRASP), a metaheuristic originally proposed for the problem by Festa. The resulting algorithm outperforms state-of-the-art with respect to solution quality, in some cases by orders of magnitude, on both random and real data in our experiments. The results indicate that the number of local optima is considerably reduced using the proposed heuristic.  相似文献   

14.
We develop a series of theorems about the graph structure of the classical Minimum Linear Arrangement (MinLA) problem which disclose properties that can be exploited by Multi-Neighborhood Search (MNS) algorithms. As a foundation, we differentiate between swaps of labels attached to adjacent and non-adjacent nodes to create two new neighborhood classes, and show how our theorems yield efficient algorithms for updating key arrays used by local search procedures. In addition, we introduce a class of neighborhoods called set-based neighborhoods supported by a theorem that identifies solutions (labelings) for the MinLA problem in polynomial time that dominate exponential numbers of alternative solutions. The component neighborhoods within this new neighborhood class can be applied in various sequences in conjunction with the first two new neighborhoods introduced. Our results also apply to problems with objectives different than those of MinLA. Finally, our results make it possible to exploit the new neighborhoods according to the user's choice of MNS protocols and alternative local search algorithms.  相似文献   

15.
This paper considers a recently introduced NP-hard problem on graphs, called the dominating tree problem. In order to solve this problem, we develop a variable neighborhood search (VNS) based heuristic. Feasible solutions are obtained by using the set of vertex permutations that allow us to implement standard neighborhood structures and the appropriate local search procedure. Computational experiments include two classes of randomly generated test instances and benchmark test instances from the literature. Optimality of VNS solutions on small size instances is verified with CPLEX.  相似文献   

16.
In this paper we are concerned with finding the Pareto optimal front or a good approximation to it. Since non-dominated solutions represent the goal in multiobjective optimisation, the dominance relation is frequently used to establish preference between solutions during the search. Recently, relaxed forms of the dominance relation have been proposed in the literature for improving the performance of multiobjective search methods. This paper investigates the influence of different fitness evaluation methods on the performance of two multiobjective methodologies when applied to a highly constrained two-objective optimisation problem. The two algorithms are: the Pareto archive evolutionary strategy and a population-based annealing algorithm. We demonstrate here, on a highly constrained problem, that the method used to evaluate the fitness of candidate solutions during the search affects the performance of both algorithms and it appears that the dominance relation is not always the best method to use.  相似文献   

17.
We introduce and test a new approach for the bi-objective routing problem known as the traveling salesman problem with profits. This problem deals with the optimization of two conflicting objectives: the minimization of the tour length and the maximization of the collected profits. This problem has been studied in the form of a single objective problem, where either the two objectives have been combined or one of the objectives has been treated as a constraint. The purpose of our study is to find solutions to this problem using the notion of Pareto optimality, i.e. by searching for efficient solutions and constructing an efficient frontier. We have developed an ejection chain local search and combined it with a multi-objective evolutionary algorithm which is used to generate diversified starting solutions in the objective space. We apply our hybrid meta-heuristic to synthetic data sets and demonstrate its effectiveness by comparing our results with a procedure that employs one of the best single-objective approaches.   相似文献   

18.
In this paper we explore the influence of adaptive memory in the performance of heuristic methods when solving a hard combinatorial optimization problem. Specifically, we tackle the adaptation of tabu search and scatter search to the bandwidth minimization problem. It consists of finding a permutation of the rows and columns of a given matrix which keeps the non-zero elements in a band that is as close as possible to the main diagonal. This is a classic problem, introduced in the late sixties, that also has a well-known formulation in terms of graphs. Different exact and heuristic approaches have been proposed for the bandwidth problem. Our contribution consists of two new algorithms, one based on the tabu search methodology and the other based on the scatter search framework. We also present a hybrid method combining both for improved outcomes. Extensive computational testing shows the influence of the different elements in heuristic search, such as neighborhood definition, local search, combination methods and the use of memory. We compare our proposals with the most recent and advanced methods for this problem, concluding that our new methods can compete with them in speed and running time.  相似文献   

19.
针对混流U型拆卸线平衡排序问题,考虑拆卸时间不确定,建立了该问题最小拆卸线平均闲置率、尽早拆卸危害和高需求零部件、最小化平均方向改变次数的多目标优化模型,并提出一种基于分解和动态邻域搜索的混合多目标进化算法(Hybrid Multi-objective Evolutionary Algorithm Based on Decomposition, HMOEA/D)。该算法通过采用弹性任务分配策略、动态邻域结构和动态调整权重以保证解的可行性并搜索得到分布较好的非劣解集。最后,仿真求解实验设计技术(DOE)生成的测试算例,结果表明HMOEA/D较其它算法能得到更接近Pareto最优、分布更好的近似解集。  相似文献   

20.
The \(p\)-hub median problem consists of choosing \(p\) hub locations from a set of nodes with pairwise traffic demands in order to route the traffic between the origin-destination pairs at minimum cost. We accept general assumption that transportation between non-hub nodes is possible only via \(r\)-hub nodes, to which non-hub nodes are assigned. In this paper we propose a general variable neighborhood search heuristic to solve the problem in an efficient and effective way. Moreover, for the first time full nested variable neighborhood descent is applied as a local search within Variable neighborhood search. Computational results outperform the current state-of-the-art results obtained by GRASP based heuristic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号