首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到11条相似文献,搜索用时 78 毫秒
1.
热漏、内不可逆性和传热规律对卡诺热泵最优性能的影响   总被引:1,自引:0,他引:1  
1引言有限时间热力学研究的基本模型为内可逆模型,而实际装置往往存在热漏、摩擦、涡流等不可逆损失。本文基于一种普遍传热规律qOC凸(T)n,建立了包括上述不可逆因素的不可逆模型,导出热泵供热率与供热系数的最佳特性关系。该关系包括不同传热规律和不同损失项的模型下的多种结果。2不可逆热泵模型考虑工作于两恒温热源问的定常态流热泵,其循环满足如下条件:(1)该循环由两个等温过程和两个绝热过程组成,这四个过程一般为不可逆。(2)传热是在有限温差下进行。设高、低温侧热源和工质工作温度分别为:TH、TL、THC、TLC,这…  相似文献   

2.
Using finite-time thermodynamics, a model of an endoreversible Carnot cycle for a space power plant is established in this paper. The expressions of the cycle power output and thermal efficiency are derived. Using numerical calculations and taking the cycle power output as the optimization objective, the surface area distributions of three heat exchangers are optimized, and the maximum power output is obtained when the total heat transfer area of the three heat exchangers of the whole plant is fixed. Furthermore, the double-maximum power output is obtained by optimizing the temperature of a low-temperature heat sink. Finally, the influences of fixed plant parameters on the maximum power output performance are analyzed. The results show that there is an optimal temperature of the low-temperature heat sink and a couple of optimal area distributions that allow one to obtain the double-maximum power output. The results obtained have some guidelines for the design and optimization of actual space power plants.  相似文献   

3.
The stability of endoreversible heat engines has been extensively studied in the literature. In this paper, an alternative dynamic equations system was obtained by using restitution forces that bring the system back to the stationary state. The departing point is the assumption that the system has a stationary fixed point, along with a Taylor expansion in the first order of the input/output heat fluxes, without further specifications regarding the properties of the working fluid or the heat device specifications. Specific cases of the Newton and the phenomenological heat transfer laws in a Carnot-like heat engine model were analyzed. It was shown that the evolution of the trajectories toward the stationary state have relevant consequences on the performance of the system. A major role was played by the symmetries/asymmetries of the conductance ratio σhc of the heat transfer law associated with the input/output heat exchanges. Accordingly, three main behaviors were observed: (1) For small σhc values, the thermodynamic trajectories evolved near the endoreversible limit, improving the efficiency and power output values with a decrease in entropy generation; (2) for large σhc values, the thermodynamic trajectories evolved either near the Pareto front or near the endoreversible limit, and in both cases, they improved the efficiency and power values with a decrease in entropy generation; (3) for the symmetric case (σhc=1), the trajectories evolved either with increasing entropy generation tending toward the Pareto front or with a decrease in entropy generation tending toward the endoreversible limit. Moreover, it was shown that the total entropy generation can define a time scale for both the operation cycle time and the relaxation characteristic time.  相似文献   

4.

The performance of a domestic heat pump that uses a low quantity of propane as refrigerant has been experimentally investigated. The heat pump consists of two minichannel aluminium heat exchangers, a scroll compressor, and an electronic expansion valve. It was charged with the minimum amount of refrigerant propane required for the stable operation of the heat pump without permitting refrigerant vapor into the expansion valve at incoming heat source fluid temperature to the evaporator of +10°C. The inlet temperature of the heat source fluid passing through the evaporator was varied from +10°C to ?10°C while holding the condensing temperature constant at 35°C, 40°C, 50°C, and 60°C, respectively. The minimum refrigerant charges required at above-tested condensing temperatures were found to decrease when the condensing temperature increased and were recorded as 230 g, 224 g, 215 g, and 205 g, respectively. The results confirm that a heat pump with 5 kW capacity can be designed with less than 200 g charge of refrigerant propane in the system. Due to the high solubility of propane in compressor lubrication oil, the amount of refrigerant which may escape rapidly in case of accident or leakage is less than 150 g.  相似文献   

5.
带有蓄热装置的直膨式太阳能热泵系统的模拟研究   总被引:1,自引:0,他引:1  
介绍了一种带有相变蓄热装置的直膨式太阳能热泵系统。以青岛天气为例,对该系统的蓄热模式进行数值模拟,得出蓄热装置进出口制冷剂的温度、蓄热材料的液相率随时间的变化,结果表明在太阳能辐射量变化时,该系统的蒸发温度维持25℃左右,系统能够稳定运行;对系统热力学性质进行理论计算得出系统在冷凝温度为70℃时,系统的COP能维持在5.3左右,系统能够高效运行。  相似文献   

6.
The main research objective of this paper was to compare exergy performance of three different heat pump (HP)-based systems and one natural gas (NG)-based system for the production of heating and cooling energy in a single-house dwelling. The study considered systems based on: 1. A NG and auxiliary cooling unit; 2. Solely HP, 3. HP with additional seasonal heat storage (SHS) and a solar thermal collector (STC); 4. HP with SHS, a STC and a grey water (GW) recovery unit. The assessment of exergy efficiencies for each case was based on the transient systems simulation program TRNSYS, which was used for the simulation of energy use for space heating and cooling of the building, sanitary hot water production, and the thermal response of the seasonal heat storage and solar thermal system. The results show that an enormous waste of exergy is observed by the system based on an NG boiler (with annual overall exergy efficiency of 0.11) in comparison to the most efficient systems, based on HP water–water with a seasonal heat storage and solar thermal collector with the efficiency of 0.47. The same system with an added GW unit exhibits lower water temperatures, resulting in the exergy efficiency of 0.43. The other three systems, based on air–, water–, and ground–water HPs, show significantly lower annual source water temperatures (10.9, 11.0, 11.0, respectively) compared to systems with SHS and SHS + GW, with temperatures of 28.8 and 19.3 K, respectively.  相似文献   

7.
地源热泵空调系统热平衡及土壤温度分布实验研究   总被引:2,自引:0,他引:2  
本文利用地源热泵空调系统的全年运行实验结果,研究了地埋管换热器与周围土壤的热量交换以及土壤的温度变化。实验结果与理论计算表明,由于采用热回收技术,该系统可减少33.7%的热量排放。连续运行一年后,土壤的平均温升为0.7℃,解决了夏热冬冷地区地源热泵空调系统的土壤热平衡问题。  相似文献   

8.
二氧化碳跨临界循环应用于热泵热水器具有供水温度高、能效高的优点,而最优高压控制是保证其高能效的关键之一.为了避免实际系统最优高压控制的复杂性,提出通过系统设计实现最优充注量近似不变的充注量不动点优化方法,可避免最优高压控制,在保证系统高能效运行的同时极大地简化了系统控制.仿真计算表明,通过调节换热器大小并在气体冷却器出...  相似文献   

9.
研究托卡马克等离子体磁岛内的热输运行为.应用局域高斯热源对磁岛加热来模拟电子回旋共振加热.对同时存在背景热源与局域高斯热源的情况,观察局域高斯热源对径向电子温度分布及热输运产生的变化,分析局域高斯热源对温度扰动及磁岛约束能量的影响.  相似文献   

10.
本文提出了一种供热温度为80~100℃的新型空气源高温热泵循环(EIHP),该循环采用非共沸混合工质R290/R600a,利用内部自复叠技术和喷射器提升循环性能。针对EIHP循环建立了相应的热力学计算模型,并与传统热泵循环(CHP)进行了对比研究。根据计算结果,当冷凝器出口温度为100℃,蒸发器出口温度从25℃下降到-10℃时,相较于CHP循环,EIHP循环的COP提高了15%~27%,压缩机压比降低了20%~46%,容积制热量提高了22%~51%。此外,本文还研究了冷凝器出口温度,工质配比等参数对循环性能的影响情况。  相似文献   

11.
本文实验研究了回热器的回热率对跨临界CO2热泵系统性能的影响。结果表明:在一定压缩机频率下,随着排气压力的升高,系统制热量和COPh都存在最大值,并分别存在对应最大制热量和最大COPh的最优排气压力;在25Hz压缩机频率下,系统在低排气压力下运行时,引入回热器才能提高系统COPh,且引入回热器可在较低排气压力下,获得更高的系统COPh;在一定压缩机频率下,系统分别存在最大制热量、最高出水温度和最大COPh对应的最优回热率.在本实验条件下,如果以系统获得最大COPh为设计目标,系统回热率取15%左右为宜;如果以系统获得最高出水温度为设计目标,系统回热率取5%左右为宜。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号