首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Given a linear transformation L:? n →? n and a matrix Q∈? n , where ? n is the space of all symmetric real n×n matrices, we consider the semidefinite linear complementarity problem SDLCP(L,? n +,Q) over the cone ? n + of symmetric n×n positive semidefinite matrices. For such problems, we introduce the P-property and its variants, Q- and GUS-properties. For a matrix AR n×n , we consider the linear transformation L A :? n →? n defined by L A (X):=AX+XA T and show that the P- and Q-properties for L A are equivalent to A being positive stable, i.e., real parts of eigenvalues of A are positive. As a special case of this equivalence, we deduce a theorem of Lyapunov. Received: March 1999 / Accepted: November 1999?Published online April 20, 2000  相似文献   

2.
This paper studies a class of delivery problems associated with the Chinese postman problem and a corresponding class of delivery games. A delivery problem in this class is determined by a connected graph, a cost function defined on its edges and a special chosen vertex in that graph which will be referred to as the post office. It is assumed that the edges in the graph are owned by different individuals and the delivery game is concerned with the allocation of the traveling costs incurred by the server, who starts at the post office and is expected to traverse all edges in the graph before returning to the post office. A graph G is called Chinese postman-submodular, or, for short, CP-submodular (CP-totally balanced, CP-balanced, respectively) if for each delivery problem in which G is the underlying graph the associated delivery game is submodular (totally balanced, balanced, respectively). For undirected graphs we prove that CP-submodular graphs and CP-totally balanced graphs are weakly cyclic graphs and conversely. An undirected graph is shown to be CP-balanced if and only if it is a weakly Euler graph. For directed graphs, CP-submodular graphs can be characterized by directed weakly cyclic graphs. Further, it is proven that any strongly connected directed graph is CP-balanced. For mixed graphs it is shown that a graph is CP-submodular if and only if it is a mixed weakly cyclic graph. Finally, we note that undirected, directed and mixed weakly cyclic graphs can be recognized in linear time. Received May 20, 1997 / Revised version received August 18, 1998?Published online June 11, 1999  相似文献   

3.
Based on the authors’ previous work which established theoretical foundations of two, conceptual, successive convex relaxation methods, i.e., the SSDP (Successive Semidefinite Programming) Relaxation Method and the SSILP (Successive Semi-Infinite Linear Programming) Relaxation Method, this paper proposes their implementable variants for general quadratic optimization problems. These problems have a linear objective function c T x to be maximized over a nonconvex compact feasible region F described by a finite number of quadratic inequalities. We introduce two new techniques, “discretization” and “localization,” into the SSDP and SSILP Relaxation Methods. The discretization technique makes it possible to approximate an infinite number of semi-infinite SDPs (or semi-infinite LPs) which appeared at each iteration of the original methods by a finite number of standard SDPs (or standard LPs) with a finite number of linear inequality constraints. We establish:?•Given any open convex set U containing F, there is an implementable discretization of the SSDP (or SSILP) Relaxation Method which generates a compact convex set C such that F⊆C⊆U in a finite number of iterations.?The localization technique is for the cases where we are only interested in upper bounds on the optimal objective value (for a fixed objective function vector c) but not in a global approximation of the convex hull of F. This technique allows us to generate a convex relaxation of F that is accurate only in certain directions in a neighborhood of the objective direction c. This cuts off redundant work to make the convex relaxation accurate in unnecessary directions. We establish:?•Given any positive number ε, there is an implementable localization-discretization of the SSDP (or SSILP) Relaxation Method which generates an upper bound of the objective value within ε of its maximum in a finite number of iterations. Received: June 30, 1998 / Accepted: May 18, 2000?Published online September 20, 2000  相似文献   

4.
In this paper we describe an automatic procedure for successively reducing the set of possible nonzeros in a Jacobian matrix until eventually the exact sparsity pattern is obtained. The dependence information needed in this probing process consist of “Boolean” Jacobian-vector products and possibly also vector-Jacobian products, which can be evaluated exactly by automatic differentiation or approximated by divided differences. The latter approach yields correct sparsity patterns, provided there is no exact cancellation at the current argument.?Starting from a user specified, or by default initialized, probability distribution the procedure suggests a sequence of probing vectors. The resulting information is then used to update the probabilities that certain elements are nonzero according to Bayes’ law. The proposed probing procedure is found to require only O(logn) probing vectors on randomly generated matrices of dimension n, with a fixed number of nonzeros per row or column. This result has been proven for (block-) banded matrices, and for general sparsity pattern finite termination of the probing procedure can be guaranteed. Received: April 29, 2000 / Accepted: September 2001?Published online April 12, 2002  相似文献   

5.
6.
The General Routing Problem (GRP) is the problem of finding a minimum cost route for a single vehicle, subject to the condition that the vehicle visits certain vertices and edges of a network. It contains the Rural Postman Problem, Chinese Postman Problem and Graphical Travelling Salesman Problem as special cases. We describe a cutting plane algorithm for the GRP based on facet-inducing inequalities and show that it is capable of providing very strong lower bounds and, in most cases, optimal solutions. Received: November 1998 / Accepted: September 2000?Published online March 22, 2001  相似文献   

7.
We consider a robust (minmax-regret) version of the problem of selecting p elements of minimum total weight out of a set of m elements with uncertainty in weights of the elements. We present a polynomial algorithm with the order of complexity O((min {p,m-p})2 m) for the case where uncertainty is represented by means of interval estimates for the weights. We show that the problem is NP-hard in the case of an arbitrary finite set of possible scenarios, even if there are only two possible scenarios. This is the first known example of a robust combinatorial optimization problem that is NP-hard in the case of scenario-represented uncertainty but is polynomially solvable in the case of the interval representation of uncertainty. Received: July 1998 / Accepted: May 2000?Published online March 22, 2001  相似文献   

8.
D(β)-vertex-distinguishing total coloring of graphs   总被引:1,自引:0,他引:1  
A new concept of the D(β)-vertex-distinguishing total coloring of graphs, i.e., the proper total coloring such that any two vertices whose distance is not larger than β have different color sets, where the color set of a vertex is the set composed of all colors of the vertex and the edges incident to it, is proposed in this paper. The D(2)-vertex-distinguishing total colorings of some special graphs are discussed, meanwhile, a conjecture and an open problem are presented.  相似文献   

9.
The classes of P-, P 0-, R 0-, semimonotone, strictly semimonotone, column sufficient, and nondegenerate matrices play important roles in studying solution properties of equations and complementarity problems and convergence/complexity analysis of methods for solving these problems. It is known that the problem of deciding whether a square matrix with integer/rational entries is a P- (or nondegenerate) matrix is co-NP-complete. We show, through a unified analysis, that analogous decision problems for the other matrix classes are also co-NP-complete. Received: April 1999 / Accepted: March 1, 2000?Published online May 12, 2000  相似文献   

10.
We extend an interesting theorem of Yuan [12] for two quadratic forms to three matrices. Let C 1, C 2, C 3 be three symmetric matrices in ℜ n×n , if max{x T C 1 x,x T C 2 x,x T C 3 x}≥0 for all x∈ℜ n , it is proved that there exist t i ≥0 (i=1,2,3) such that ∑ i=1 3 t i =1 and ∑ i=1 3 t i C i has at most one negative eigenvalue. Received February 18, 1997 / Revised version received October 1, 1997? Published online June 11, 1999  相似文献   

11.
For an edge-weighted graph G with n vertices and m edges, we present a new deterministic algorithm for computing a minimum k-way cut for k=3,4. The algorithm runs in O(n k-1 F(n,m))=O(mn k log(n 2 /m)) time and O(n 2) space for k=3,4, where F(n,m) denotes the time bound required to solve the maximum flow problem in G. The bound for k=3 matches the current best deterministic bound ?(mn 3) for weighted graphs, but improves the bound ?(mn 3) to O(n 2 F(n,m))=O(min{mn 8/3,m 3/2 n 2}) for unweighted graphs. The bound ?(mn 4) for k=4 improves the previous best randomized bound ?(n 6) (for m=o(n 2)). The algorithm is then generalized to the problem of finding a minimum 3-way cut in a symmetric submodular system. Received: April 1999 / Accepted: February 2000?Published online August 18, 2000  相似文献   

12.
This note studies A , a condition number used in the linear programming algorithm of Vavasis and Ye [14] whose running time depends only on the constraint matrix A∈ℝ m×n , and (A), a variant of another condition number due to Ye [17] that also arises in complexity analyses of linear programming problems. We provide a new characterization of A and relate A and (A). Furthermore, we show that if A is a standard Gaussian matrix, then E(ln A )=O(min{mlnn,n}). Thus, the expected running time of the Vavasis-Ye algorithm for linear programming problems is bounded by a polynomial in m and n for any right-hand side and objective coefficient vectors when A is randomly generated in this way. As a corollary of the close relation between A and (A), we show that the same bound holds for E(ln(A)). Received: September 1998 / Accepted: September 2000?Published online January 17, 2001  相似文献   

13.
Given an m×n integer matrix A of full row rank, we consider the problem of computing the maximum of ∥B -1 A2 where B varies over all bases of A. This quantity appears in various places in the mathematical programming literature. More recently, logarithm of this number was the determining factor in the complexity bound of Vavasis and Ye’s primal-dual interior-point algorithm. We prove that the problem of approximating this maximum norm, even within an exponential (in the dimension of A) factor, is NP-hard. Our proof is based on a closely related result of L. Khachiyan [1]. Received November 13, 1998 / Revised version received January 20, 1999? Published online May 12, 1999  相似文献   

14.
Given an undirected graph G=(V,E) with |V|=n and an integer k between 0 and n, the maximization graph partition (MAX-GP) problem is to determine a subset SV of k nodes such that an objective function w(S) is maximized. The MAX-GP problem can be formulated as a binary quadratic program and it is NP-hard. Semidefinite programming (SDP) relaxations of such quadratic programs have been used to design approximation algorithms with guaranteed performance ratios for various MAX-GP problems. Based on several earlier results, we present an improved rounding method using an SDP relaxation, and establish improved approximation ratios for several MAX-GP problems, including Dense-Subgraph, Max-Cut, Max-Not-Cut, and Max-Vertex-Cover. Received: March 10, 2000 / Accepted: July 13, 2001?Published online February 14, 2002  相似文献   

15.
This paper introduces and analyses a new algorithm for minimizing a convex function subject to a finite number of convex inequality constraints. It is assumed that the Lagrangian of the problem is strongly convex. The algorithm combines interior point methods for dealing with the inequality constraints and quasi-Newton techniques for accelerating the convergence. Feasibility of the iterates is progressively enforced thanks to shift variables and an exact penalty approach. Global and q-superlinear convergence is obtained for a fixed penalty parameter; global convergence to the analytic center of the optimal set is ensured when the barrier parameter tends to zero, provided strict complementarity holds. Received: December 21, 2000 / Accepted: July 13, 2001?Published online February 14, 2002  相似文献   

16.
The Cardinality Constrained Circuit Problem (CCCP) is the problem of finding a minimum cost circuit in a graph where the circuit is constrained to have at most k edges. The CCCP is NP-Hard. We present classes of facet-inducing inequalities for the convex hull of feasible circuits, and a branch-and-cut solution approach using these inequalities. Received: April 1998 / Accepted: October 2000?Published online October 26, 2001  相似文献   

17.
We consider the parametric programming problem (Q p ) of minimizing the quadratic function f(x,p):=x T Ax+b T x subject to the constraint Cxd, where x∈ℝ n , A∈ℝ n×n , b∈ℝ n , C∈ℝ m×n , d∈ℝ m , and p:=(A,b,C,d) is the parameter. Here, the matrix A is not assumed to be positive semidefinite. The set of the global minimizers and the set of the local minimizers to (Q p ) are denoted by M(p) and M loc (p), respectively. It is proved that if the point-to-set mapping M loc (·) is lower semicontinuous at p then M loc (p) is a nonempty set which consists of at most ? m,n points, where ? m,n = is the maximal cardinality of the antichains of distinct subsets of {1,2,...,m} which have at most n elements. It is proved also that the lower semicontinuity of M(·) at p implies that M(p) is a singleton. Under some regularity assumption, these necessary conditions become the sufficient ones. Received: November 5, 1997 / Accepted: September 12, 2000?Published online November 17, 2000  相似文献   

18.
The main notion dealt with in this article is
where A is a Boolean algebra. A partition of 1 is a family ofnonzero pairwise disjoint elements with sum 1. One of the main reasons for interest in this notion is from investigations about maximal almost disjoint families of subsets of sets X, especially X=ω. We begin the paper with a few results about this set-theoretical notion. Some of the main results of the paper are: • (1) If there is a maximal family of size λ≥κ of pairwise almost disjoint subsets of κ each of size κ, then there is a maximal family of size λ of pairwise almost disjoint subsets of κ+ each of size κ. • (2) A characterization of the class of all cardinalities of partitions of 1 in a product in terms of such classes for the factors; and a similar characterization for weak products. • (3) A cardinal number characterization of sets of cardinals with a largest element which are for some BA the set of all cardinalities of partitions of 1 of that BA. • (4) A computation of the set of cardinalities of partitions of 1 in a free product of finite-cofinite algebras. Received: 9 October 1997 / Published online: 21 March 2001  相似文献   

19.
    
Let (K, M, H) be an upper triangular biomodule problem. Brüstle and Hille showed that the opposite algebra A of the endomorphism algebra of a projective generator P of the matrices category of (K, M, H) is quasi-hereditary, and there is an equivalence between the category of Δ-good modules of A and Mat(K, M). In this note, based on the tame theorem for bimodule problems, we show that if the algebra A associated with an upper triangular bimodule problem is of Δ-tame representation type, then the category F(Δ) has the homogeneous property, i.e. almost all modules in F(Δ) are isomorphic to their Auslander-Reiten translations. Moreover, if (K, M, H) is an upper triangular bipartite bimodule problem, then A is of Δ-tame representation type if and only if F(Δ) is homogeneous. This work was partially supported by the National Natural Science Foundation of China (Grant Nos. 10426014, 10501010 and 19331030) and the Foundation of Hubei Provincial Department of Education (Grant No. D200510005).  相似文献   

20.
This paper presents a polynomial-time dual simplex algorithm for the generalized circulation problem. An efficient implementation of this algorithm is given that has a worst-case running time of O(m 2(m+nlogn)logB), where n is the number of nodes, m is the number of arcs and B is the largest integer used to represent the rational gain factors and integral capacities in the network. This running time is as fast as the running time of any combinatorial algorithm that has been proposed thus far for solving the generalized circulation problem. Received: June 1998 / Accepted: June 27, 2001?Published online September 17, 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号