首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We consider the problem of characterizing the smooth, isometric deformations of a planar material region identified with an open, connected subset \({\mathcal{D}}\) of two-dimensional Euclidean point space \(\mathbb{E}^{2}\) into a surface \({\mathcal{S}}\) in three-dimensional Euclidean point space \(\mathbb{E}^{3}\). To be isometric, such a deformation must preserve the length of every possible arc of material points on \({\mathcal{D}}\). Characterizing the curves of zero principal curvature of \({\mathcal{S}}\) is of major importance. After establishing this characterization, we introduce a special curvilinear coordinate system in \(\mathbb{E}^{2}\), based upon an à priori chosen pre-image form of the curves of zero principal curvature in \({\mathcal{D}}\), and use that coordinate system to construct the most general isometric deformation of \({\mathcal{D}}\) to a smooth surface \({\mathcal{S}}\). A necessary and sufficient condition for the deformation to be isometric is noted and alternative representations are given. Expressions for the curvature tensor and potentially nonvanishing principal curvature of \({\mathcal{S}}\) are derived. A general cylindrical deformation is developed and two examples of circular cylindrical and spiral cylindrical form are constructed. A strategy for determining any smooth isometric deformation is outlined and that strategy is employed to determine the general isometric deformation of a rectangular material strip to a ribbon on a conical surface. Finally, it is shown that the representation established here is equivalent to an alternative previously established by Chen, Fosdick and Fried (J. Elast. 119:335–350, 2015).  相似文献   

2.
3.
We study the asymptotic behaviour of the resolvents \({(\mathcal{A}^\varepsilon+I)^{-1}}\) of elliptic second-order differential operators \({{\mathcal{A}}^\varepsilon}\) in \({\mathbb{R}^d}\) with periodic rapidly oscillating coefficients, as the period \({\varepsilon}\) goes to zero. The class of operators covered by our analysis includes both the “classical” case of uniformly elliptic families (where the ellipticity constant does not depend on \({\varepsilon}\)) and the “double-porosity” case of coefficients that take contrasting values of order one and of order \({\varepsilon^2}\) in different parts of the period cell. We provide a construction for the leading order term of the “operator asymptotics” of \({(\mathcal{A}^\varepsilon+I)^{-1}}\) in the sense of operator-norm convergence and prove order \({O(\varepsilon)}\) remainder estimates.  相似文献   

4.
In this paper, we construct linearly stable quasi-periodic breathers for the Hamiltonian systems in the form \({{\rm i} \dot{q}_n+v_n q_n+\delta|q_n|^2q_n+\varepsilon_n \left(q_{n+1}+q_{n-1} \right)=0,\quad n \in \mathbb{Z}}\) where \({\{v_n\}_{n \in \mathbb{Z}}}\) is a family of time independent identically distributed (i.i.d) random variables with common distribution \({g = dv_n, v_n \in [0,1]}\) and \({|\varepsilon_n| \leq \varepsilon e^{-\varrho |n|}}\) with \({\varepsilon,\varrho > 0}\) . We prove that for \({\varepsilon, \delta}\) sufficiently small, the equation admits a family of small-amplitude and linearly stable, time quasi-periodic solutions for most of the parameters \({\{v_n\}_{n \in \mathbb{Z}}}\) .  相似文献   

5.
In continuation of Matsumoto’s paper (Nonlinearity 25:1495–1511, 2012) we show that various subspaces are \(C^{\infty }\)-dense in the space of orientation-preserving \(C^{\infty }\)-diffeomorphisms of the circle with rotation number \(\alpha \), where \(\alpha \in {\mathbb {S}}^1\) is any prescribed Liouville number. In particular, for every odometer \({\mathcal {O}}\) of product type we prove the denseness of the subspace of diffeomorphisms which are orbit-equivalent to \({\mathcal {O}}\).  相似文献   

6.
We show that the question of stability of a steady incompressible Navier-Stokes flow \({\mathrm{V}}\) in a 3D exterior domain \({\Omega}\) is essentially a finite-dimensional problem (Theorem 3.2). Although the associated linearized operator has an essential spectrum touching the imaginary axis, we show that certain assumptions on the eigenvalues of this operator guarantee the stability of flow \({\mathrm{V}}\) (Theorem 4.1). No assumption on the smallness of the steady flow \({\mathrm{V}}\) is required.  相似文献   

7.
Particle image velocimetry (PIV) has been significantly advanced since its conception in early 1990s. With the advancement of imaging modalities, applications of 2D PIV have far expanded into biology and medicine. One example is echocardiographic particle image velocimetry that is used for in vivo mapping of the flow inside the heart chambers with opaque boundaries. Velocimetry methods can help better understanding the biomechanical problems. The current trend is to develop three-dimensional velocimetry techniques that take advantage of modern medical imaging tools. This study provides a novel framework for validation of velocimetry methods that are inherently three dimensional such as but not limited to those acquired by 3D echocardiography machines. This framework creates 3D synthetic fields based on a known 3D velocity field \({\mathbf{V}}\) and a given 3D brightness field \({\mathbf{B}}\). The method begins with computing the inverse flow \({\mathbf{V}}^{\varvec{*}} \) based on the velocity field \({\mathbf{V}}\). Then the transformation of \({\mathbf{B}}\), imposed by \({\mathbf{V}}\), is calculated using the computed inverse flow according to \({\mathbf{B}}^{\varvec{*}} \left( {\mathbf{x}} \right) = {\mathbf{B}}\left( {{\mathbf{x}} + {\mathbf{V}}^{\varvec{*}} \left( {\mathbf{x}} \right)} \right)\), where x is the coordinates of voxels in \({\mathbf{B}}^{\varvec{*}} \), with a 3D weighted average interpolation, which provides high accuracy, low memory requirement, and low computational time. To check the validity of the framework, we generate pairs of 3D brightness fields by employing Hill’s spherical vortex velocity field. \({\mathbf{B}}\) and the generated \({\mathbf{B}}^{\varvec{*}} \) are then processed by our in-house 3D particle image velocimetry software to obtain the interrelated velocity field. The results indicates that the computed and imposed velocity fields are in agreement.  相似文献   

8.
We consider the compressible Navier–Stokes equations for viscous and barotropic fluids with density dependent viscosity. The aim is to investigate mathematical properties of solutions of the Navier–Stokes equations using solutions of the pressureless Navier–Stokes equations, that we call quasi solutions. This regime corresponds to the limit of highly compressible flows. In this paper we are interested in proving the announced result in Haspot (Proceedings of the 14th international conference on hyperbolic problems held in Padova, pp 667–674, 2014) concerning the existence of global weak solution for the quasi-solutions, we also observe that for some choice of initial data (irrotationnal) the quasi solutions verify the porous media, the heat equation or the fast diffusion equations in function of the structure of the viscosity coefficients. In particular it implies that it exists classical quasi-solutions in the sense that they are \({C^{\infty}}\) on \({(0,T)\times \mathbb{R}^{N}}\) for any \({T > 0}\). Finally we show the convergence of the global weak solution of compressible Navier–Stokes equations to the quasi solutions in the case of a vanishing pressure limit process. In particular for highly compressible equations the speed of propagation of the density is quasi finite when the viscosity corresponds to \({\mu(\rho)=\rho^{\alpha}}\) with \({\alpha > 1}\). Furthermore the density is not far from converging asymptotically in time to the Barrenblatt solution of mass the initial density \({\rho_{0}}\).  相似文献   

9.
Let \({S\subset\mathbb{R}^2}\) be a bounded Lipschitz domain and denote by \({W^{2,2}_{\text{iso}}(S; \mathbb{R}^3)}\) the set of mappings \({u\in W^{2,2}(S;\mathbb{R}^3)}\) which satisfy \({(\nabla u)^T(\nabla u) = Id}\) almost everywhere. Under an additional regularity condition on the boundary \({\partial S}\) (which is satisfied if \({\partial S}\) is piecewise continuously differentiable), we prove that the strong W 2,2 closure of \({W^{2,2}_{\text{iso}}(S; \mathbb{R}^3)\cap C^{\infty}(\overline{S};\mathbb{R}^3)}\) agrees with \({W^{2,2}_{\text{iso}}(S; \mathbb{R}^3)}\).  相似文献   

10.
We discuss certain compact, translation-invariant subsets of the set \({\mathcal {R}}\) of the generalized reflectionless potentials for the one-dimensional Schrödinger operator. We determine a stationary ergodic subset of \({\mathcal {R}}\) whose Lyapunov exponent is discontinuous at a point. We also determine an almost automorphic, non-almost periodic minimal subset of \(\mathcal {R}\).  相似文献   

11.
Regarding P.-L. Lions’ open question in Oxford Lecture Series in Mathematics and its Applications, Vol. 3 (1996) concerning the propagation of regularity for the density patch, we establish the global existence of solutions to the two-dimensional inhomogeneous incompressible Navier–Stokes system with initial density given by \({(1 - \eta){\bf 1}_{{\Omega}_{0}} + {\bf 1}_{{\Omega}_{0}^{c}}}\) for some small enough constant \({\eta}\) and some \({W^{k+2,p}}\) domain \({\Omega_{0}}\), with initial vorticity belonging to \({L^{1} \cap L^{p}}\) and with appropriate tangential regularities. Furthermore, we prove that the regularity of the domain \({\Omega_0}\) is preserved by time evolution.  相似文献   

12.
13.
14.
We look at the effective Hamiltonian \({\overline{H}}\) associated with the Hamiltonian \({H(p,x)=H(p)+V(x)}\) in the periodic homogenization theory. Our central goal is to understand the relation between \({V}\) and \({\overline{H}}\). We formulate some inverse problems concerning this relation. Such types of inverse problems are, in general, very challenging. In this paper, we discuss several special cases in both convex and nonconvex settings.  相似文献   

15.
We study the asymptotic behavior of the motion of an ideal incompressible fluid in a perforated domain. The porous medium is composed of inclusions of size \({\varepsilon}\) separated by distances \({d_{\varepsilon}}\) and the fluid fills the exterior. If the inclusions are distributed on the unit square, the asymptotic behavior depends on the limit of \({\frac{d_{\varepsilon}}\varepsilon}\) when \({\varepsilon}\) goes to zero. If \({\frac{d_{\varepsilon}}\varepsilon \to \infty}\), then the limit motion is not perturbed by the porous medium, namely, we recover the Euler solution in the whole space. If, on the contrary, \({\frac{d_{\varepsilon}}\varepsilon \to 0}\), then the fluid cannot penetrate the porous region, namely, the limit velocity verifies the Euler equations in the exterior of an impermeable square. If the inclusions are distributed on the unit segment then the behavior depends on the geometry of the inclusion: it is determined by the limit of \({\frac{d_{\varepsilon}}{\varepsilon^{2+\frac1\gamma}}}\) where \({\gamma \in (0,\infty]}\) is related to the geometry of the lateral boundaries of the obstacles. If \({\frac{d_{\varepsilon}}{\varepsilon^{2+\frac1\gamma}} \to \infty}\), then the presence of holes is not felt at the limit, whereas an impermeable wall appears if this limit is zero. Therefore, for a distribution in one direction, the critical distance depends on the shape of the inclusions; in particular, it is equal to \({\varepsilon^{3}}\) for balls.  相似文献   

16.
Consider a weakly nonlinear CGL equation on the torus \(\mathbb {T}^d\):
$$\begin{aligned} u_t+i\Delta u=\epsilon [\mu (-1)^{m-1}\Delta ^{m} u+b|u|^{2p}u+ ic|u|^{2q}u]. \end{aligned}$$
(*)
Here \(u=u(t,x)\), \(x\in \mathbb {T}^d\), \(0<\epsilon <<1\), \(\mu \geqslant 0\), \(b,c\in \mathbb {R}\) and \(m,p,q\in \mathbb {N}\). Define \(I(u)=(I_{\mathbf {k}},\mathbf {k}\in \mathbb {Z}^d)\), where \(I_{\mathbf {k}}=v_{\mathbf {k}}\bar{v}_{\mathbf {k}}/2\) and \(v_{\mathbf {k}}\), \(\mathbf {k}\in \mathbb {Z}^d\), are the Fourier coefficients of the function \(u\) we give. Assume that the equation \((*)\) is well posed on time intervals of order \(\epsilon ^{-1}\) and its solutions have there a-priori bounds, independent of the small parameter. Let \(u(t,x)\) solve the equation \((*)\). If \(\epsilon \) is small enough, then for \(t\lesssim {\epsilon ^{-1}}\), the quantity \(I(u(t,x))\) can be well described by solutions of an effective equation:
$$\begin{aligned} u_t=\epsilon [\mu (-1)^{m-1}\Delta ^m u+ F(u)], \end{aligned}$$
where the term \(F(u)\) can be constructed through a kind of resonant averaging of the nonlinearity \(b|u|^{2p}+ ic|u|^{2q}u\).
  相似文献   

17.
In (Isett, Regularity in time along the coarse scale flow for the Euler equations, 2013), the first author proposed a strengthening of Onsager’s conjecture on the failure of energy conservation for incompressible Euler flows with Hölder regularity not exceeding \({1/3}\). This stronger form of the conjecture implies that anomalous dissipation will fail for a generic Euler flow with regularity below the Onsager critical space \({L_t^\infty B_{3,\infty}^{1/3}}\) due to low regularity of the energy profile. This paper is the first and main paper in a series of two, the results of which may be viewed as first steps towards establishing the conjectured failure of energy regularity for generic solutions with Hölder exponent less than \({1/5}\). The main result of the present paper shows that any given smooth Euler flow can be perturbed in \({C^{1/5-\epsilon}_{t,x}}\) on any pre-compact subset of \({\mathbb{R}\times \mathbb{R}^3}\) to violate energy conservation. Furthermore, the perturbed solution is no smoother than \({C^{1/5-\epsilon}_{t,x}}\). As a corollary of this theorem, we show the existence of nonzero \({C^{1/5-\epsilon}_{t,x}}\) solutions to Euler with compact space-time support, generalizing previous work of the first author (Isett, Hölder continuous Euler flows in three dimensions with compact support in time, 2012) to the nonperiodic setting.  相似文献   

18.
In this paper we contribute to the generic theory of Hamiltonians by proving that there is a \(C^2\)-residual \({\mathcal {R}}\) in the set of \(C^2\) Hamiltonians on a closed symplectic manifold \(M\), such that, for any \(H\in {\mathcal {R}}\), there is a full measure subset of energies \(e\) in \(H(M)\) such that the Hamiltonian level \((H,e)\) is topologically mixing; moreover these level sets are homoclinic classes.  相似文献   

19.
We consider the variational problem of finding the longest closed curves of given minimal thickness on the unit sphere. After establishing the existence of solutions for any given thickness between 0 and 1, we explicitly construct for each given thickness \({\Theta_n:= {\rm sin}\, \pi/(2n),}\) \({n\in\mathbb{N}}\), exactly \({\varphi(n)}\) solutions, where \({\varphi}\) is Euler’s totient function from number theory. Then we prove that these solutions are unique, and also provide a complete characterisation of sphere filling curves on the unit sphere; that is of those curves whose spherical tubular neighbourhood completely covers the surface area of the unit sphere exactly once. All of these results carry over to open curves as well, as indicated in the last section.  相似文献   

20.
We prove that the fixed points of the curved 3-body problem and their associated relative equilibria are Lyapunov stable if the solutions are restricted to \({\mathbb {S}}^1\), but unstable if the bodies are considered in \({\mathbb {S}}^2\).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号