首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
陈玲  唐有绮 《力学学报》2019,51(4):1180-1188
轴向运动结构的横向参激振动一直是非线性动力学领域的研究热点之一. 目前研究较多的是轴向速度摄动的动力学模型,参数激励由速度的简谐波动产生. 但在工程应用中,存在轴向张力波动的运动结构较为广泛,而针对轴向张力摄动的模型研究较少. 本文研究了时变张力作用下轴向变速运动黏弹性梁的分岔与混沌. 考虑随着时间周期性变化的轴向张力,计入线性黏性阻尼,采用Kelvin模型的黏弹性本构关系,给出了梁横向非线性 振动的积分--偏微分控制方程. 首先应用四阶Galerkin截断方法将控制方程离散化,然后采用四阶Runge-Kutta方法计算系统的数值解,进而确定其动力学行为. 基于梁中点的横向位移和速度的数值结果,仿真了梁沿平均轴速、张力摄动幅值、张力摄动频率以及黏弹性系数变化的倍周期分岔与混 沌运动,并且通过计算系统的最大李雅普诺夫指数来识别其混沌行为. 结果表明:较小的平均轴速有助于梁的周期运动,梁在临界速度附近容易发生倍周期分岔与混沌行为. 随着张力摄动幅值的增大,梁的振动幅值的混沌区间不断增大. 较小的黏弹性系数和张力摄动频率更容易使梁发生混沌运动. 最后,给出时程图、频谱图、相图以及Poincaré 映射图来确定梁的混沌运动.   相似文献   

2.
一种确定非线性裂纹转子解的形式的新方法   总被引:3,自引:0,他引:3  
郑吉兵  孟光 《力学学报》1998,30(1):51-57
将小波变换与Poincare映射相结合,即用Poincare映射确定周期解,用谐波小波变换区分拟周期响应和混沌运动,提出了一种分析非线性裂纹转子系统解的形式随参数变化的新方法.结果表明这种方法是非常有效的,它比以前所用的计算Liapunov指数的方法节约了计算时间,并且较易实施.  相似文献   

3.
The chaotic vibrations of a bimetallic shallow shell of revolution under time-varying temperature excitation are investigated in the present study. The governing equations are established in forms similar to those of classical single-layered shell theory by re-determination of reference surface. The nonlinear differential equation in time-mode is derived by variational method following an assumed spatial-mode. The Melnikov function is established theoretically to estimate regions of the chaos, and the Poincaré map, phase portrait, Lyapunov exponent, and Lyapunov dimension are used to determine if a chaotic motion really appears. Further investigations are developed by means of detailed numerical simulation, and both the bifurcation diagrams and corresponding maximum Lyapunov exponent are illustrated. The influence of static and time-dependent temperature parameters, height parameter of the shell, and damping parameter on the dynamic characteristics is examined. Interesting phenomena such as the onset of chaos, transient chaotic motion, chaos with interior crisis and period window, period-doubling scenario and reversed period-doubling bifurcation leading to chaos, jump phenomena, and chaos suddenly converting to period orbit have been observed from these figures.  相似文献   

4.
非线性碰摩力对碰摩转子分叉与混沌行为的影响   总被引:24,自引:1,他引:24  
研究了具有非线性碰摩力的转子局部碰摩的分叉与混沌运动,利用计算机仿真对某发动机转子的碰摩故障进行了数值模拟,讨论了转子系统参数的变化对转子混池运动状态的影响,并与碰摩实验结果进行了比较,发现了具有非线性碰摩力的转子局部碰摩转子系统的各种多周期运动和混沌运动及其演变过程。  相似文献   

5.
针对磁场环境中周期外载作用下轴向运动导电条形板的非线性振动及混沌运动问题进行研究。应用改进多尺度法对横向磁场中条形板的强非线性振动问题进行求解,得到超谐波共振下系统的分岔响应方程。根据奇异性理论对非线性动力学系统的普适开折进行分析,求得含两个开折参数的转迁集及对应区域的拓扑结构分岔图。通过数值算例,分别得到以磁感应强度、轴向拉力、激励力幅值和激励频率为分岔控制参数的分岔图和最大李雅普诺夫指数图,以及反映不同运动行为区域的动力学响应图形,讨论分岔参数对系统呈现的倍周期和混沌运动的影响。结果表明,可通过相应参数的改变实现对系统复杂动力学行为的控制。  相似文献   

6.
Intriguing as the discovery of new chaotic maps is, some new maps also bring new nonlinear phenomena of iterative map behavior. In this paper, we present a simple two-dimensional chaotic map which has three totally separated regions. The twin regions, creating strange and interesting attractors, are close to each other and vertically reflected however not identical in shape, while the distant region, generating a Hénon-like attractor, starts with period-doubling until complete chaos. Given the unusual behavior of the map introduced in this paper, we initially presented linear stability and bifurcation analysis per regions, with Lyapunov exponents and largest exponent computation. Besides the standardized calculations, what we focus here is to find out how a simple map can exhibit different chaotic behaviors in different regions.  相似文献   

7.
Based on Rikitake system, a new chaotic system is discussed. Some basic dynamical properties, such as equilibrium points, Lyapunov exponents, fractal dimension, Poincaré map, bifurcation diagrams and chaotic dynamical behaviors of the new chaotic system are studied, either numerically or analytically. The obtained results show clearly that the system discussed is a new chaotic system. By utilizing the fractional calculus theory and computer simulations, it is found that chaos exists in the new fractional-order three-dimensional system with order less than 3. The lowest order to yield chaos in this system is 2.733. The results are validated by the existence of one positive Lyapunov exponent and some phase diagrams. Further, based on the stability theory of the fractional-order system, projective synchronization of the new fractional-order chaotic system through designing the suitable nonlinear controller is investigated. The proposed method is rather simple and need not compute the conditional Lyapunov exponents. Numerical results are performed to verify the effectiveness of the presented synchronization scheme.  相似文献   

8.
两级悬浮EMS型磁悬浮控制系统的非线性动力学特性   总被引:3,自引:0,他引:3  
在考虑二级悬浮弹簧的非线性特性的基础上,建立了两级悬浮EMS型磁悬浮控制系统的非线性动力学模型,给出了控制参数G1,G2的稳定性条件,进一步讨论了该磁悬浮系统在外界激励下的分叉行为及混沌动力特性,并利用Poincare映射,功率谱分析及最大Lyapunov指数等混沌运动的统计特征描述了该状态下控制系统的混沌运动特性。  相似文献   

9.
研究磁场环境中轴向运动导电薄板磁弹性动力学及分岔特性。考虑几何非线性因素,在给出薄板运动的动能、应变能及外力虚功的基础上,应用哈密顿变分原理,得到磁场中轴向运动薄板的非线性磁弹性振动方程,并给出洛伦兹电磁力的确定形式。针对横向磁场环境中条形板共振特性进行分析,应用多尺度法和奇异性理论,得到稳态运动下的分岔响应方程以及普适开折对应的转迁集。通过算例,分别得到以磁感应强度、轴向运动速度和激励力为分岔控制参数的分岔图、最大李雅普诺夫指数图和庞加莱映射图等计算结果,讨论不同分岔参数对系统呈现的倍周期和混沌运动的影响。结果表明,通过相应参数的改变可实现对系统复杂动力学行为的控制。  相似文献   

10.
A model of spring-block on a moving plate with a nonlinear periodic substrate potential whose shape can be varied continuously as a function of a shape parameter is investigated. The dynamical study of the system for different values of the shape parameter involves the analysis of phase space, the construction of bifurcation diagrams, and the computation of the largest Lyapunov exponent. A smart damper associated with drag coefficient is proposed to reduce stick-slip and chaotic motions. The domain of validity of the control method is derived.  相似文献   

11.
Chaotic vibrations in high-speed milling   总被引:2,自引:0,他引:2  
A large number of literatures are devoted to the stability of the milling process and various control methods for chatter suppression. But chaotic dynamics beyond the stable region has not been considered extensively. Moreover, modeling issues for chaotic motion need more challenge for accurate prediction of its complex dynamical behavior. This paper presents a detailed two-degree-of-freedom mechanics based model for the study of chaotic vibrations in milling. Segmental multiple regenerative effect that is the principle feature of nonlinear vibrations in milling processes besides two state dependent time delays has been considered. Exact geometrical formulation of multiple regenerative effects by considering simultaneously different numbers of delayed tool positions over the cutting zone is presented for the first time. Phase portrait, bifurcation diagram, largest Lyapunov exponent, and surface profile were calculated for a given machine tool and workpiece parameters. The simulation results show positive values of the largest Lyapunov exponent corresponding to the existence of chaos in high-speed milling operations. Also, investigation of the machined surface of the workpiece formed by the helical mill demonstrates an irregular pattern on the surface.  相似文献   

12.
This study presents a dynamic analysis of a flexible rotor supported by two porous squeeze micropolar fluid-film journal bearings with nonlinear suspension. The dynamics of the rotor center and bearing center are studied. The analysis of the rotor–bearing system is investigated under the assumptions of non-Newtonian fluid and a short bearing approximation. The spatial displacements in the horizontal and vertical directions are considered for various nondimensional speed ratios. The dynamic equations are solved using the Runge–Kutta method. The methods of analysis employed in this study are inclusive of the dynamic trajectories of the rotor center and bearing center, power spectra, Poincaré maps, and bifurcation diagrams. The maximum Lyapunov exponent analysis is also used to identify the onset of chaotic motion. The numerical results show that the stability of the dynamic system varies with the nondimensional speed ratios, the nondimensional parameter, and permeability. The modeling results obtained by using the method proposed in this paper can be employed to predict the dynamics of the rotor–bearing system, and the undesirable behavior of the rotor and bearing centers can be avoided.  相似文献   

13.
有界噪声激励下单摆-谐振子系统的混沌运动   总被引:1,自引:0,他引:1  
研究了具有同宿轨道和周期轨道的可积单摆-谐振子系统在弱Hamilton摄动(即弱耦合摄动)和弱非Hamilton摄动(即阻尼和有界噪声微扰)下的混沌运动.用Melnikov方程预测Hamilton系统中可能存在混沌运动的参数域,并用Poincare截面验证解析结果.用数值方法计算了有阻尼与有界噪声激励下系统的最大Lyapun0V指数和Poincare截面,结果表明有界噪声在频率上的扩散减小了引发系统产生混沌运动的效应。  相似文献   

14.
Peng  Mingshu  Yi  Xiaoyu  Cheng  Ranran 《Nonlinear dynamics》2023,111(10):9201-9213

It is an awfully difficult task to design an efficient numerical method for bifurcation diagrams, the graphs of Lyapunov exponents, or the topological entropy about discrete dynamical systems by linear/nonlinear diffusion with the Direchlet/Neumann- boundary conditions. Until now there are less works concerned with such a problem. In this paper, we propose a scheme about bifurcating analysis in a series of discrete-time dynamical systems with linear/nonlinear diffusion terms under the periodic boundary conditions. The complexity of dynamical behaviors caused by the diffusion term are to be determined. Bifurcation diagrams are shown by numerical simulation and chaotic behavior (chaotic Turing patterns) is demonstrated by computing the largest Lyapunov exponent. Our theoretical model can give an interesting case study about the phenomenon: the individuals exhibit a very simple dynamics but the groups with linear/nonlinear coupling can own a complex dynamics including fluctuation, periodicity and even chaotic behavior. We find that diffusion can trigger chaotic behavior in the present system and there exist multiple Turing patterns. It is interesting as regular or chaotic patterns can be reported in this study. Chaotic orbits emerge when exploring further in the diffusion coefficient space, and such a behavior is entirely absent in the corresponding continuous time-space system. The method proposed in the present paper is innovative and the conclusion is novel.

  相似文献   

15.
采用长轴承解析模型研究滑动轴承支承的平衡单盘柔性转子-轴承系统的自激振动,把结合打靶法的延续算法应用于柔性平衡转子-轴承系统Hopf分叉后周期解的追踪和求解上,基于Floquet理论对周期解的稳定性加以分析.通过持续追踪周期解频率变化并与失稳固有频率进行对比,分析了自激锁相现象,研究了非线性油膜力自激源对系统的作用机理.运用Poincare映射、分叉图、及Lyapnov指数对周期解分叉、混沌及进入和脱离混沌的过程进行了分析.  相似文献   

16.
This paper presents numerical results on chaotic vibrations of a shallow cylindrical shell-panel under harmonic lateral excitation. The shell, with a rectangular boundary, is simply supported for deflection and the shell is constrained elastically in an in-plane direction. Using the Donnell--Mushtari--Vlasov equation, modified with an inertia force, the basic equation is reduced to a nonlinear differential equation of a multiple-degree-of-freedom system by the Galerkin procedure. To estimate regions of the chaos, first, nonlinear responses of steady state vibration are calculated by the harmonic balance method. Next, time progresses of the chaotic response are obtained numerically by the Runge--Kutta--Gill method. The chaos accompanied with a dynamic snap-through of the shell is identified both by the Lyapunov exponent and the Poincaré projection onto the phase space. The Lyapunov dimension is carefully examined by increasing the assumed modes of vibration. The effects of the in-plane elastic constraint on the chaos of the shell are discussed.  相似文献   

17.
In this article, a novel dynamic system, the fractional-order complex Lorenz system, is proposed. Dynamic behaviors of a fractional-order chaotic system in complex space are investigated for the first time. Chaotic regions and periodic windows are explored as well as different types of motion shown along the routes to chaos. Numerical experiments by means of phase portraits, bifurcation diagrams and the largest Lyapunov exponent are involved. A new method to search the lowest order of the fractional-order system is discussed. Based on the above result, a synchronization scheme in fractional-order complex Lorenz systems is presented and the corresponding numerical simulations demonstrate the effectiveness and feasibility of the proposed scheme.  相似文献   

18.
The global homoclinic bifurcation and transition to chaotic behavior of a nonlinear gear system are studied by means of Melnikov analytical analysis. It is also an effective approach to analyze homoclinic bifurcation and detect chaotic behavior. A generalized nonlinear time varying (NLTV) dynamic model of a spur gear pair is formulated, where the backlash, time varying stiffness, external excitation, and static transmission error are included. From Melnikov method, the threshold values of the control parameter for the occurrence of homoclinic bifurcation and onset of chaos are predicted. Additionally, the numerical bifurcation analysis and numerical simulation of the system including bifurcation diagrams, phase plane portraits, time histories, power spectras, and Poincare sections are used to confirm the analytical predictions and show the transition to chaos.  相似文献   

19.
粘弹性轴向运动梁的非线性动力学行为   总被引:3,自引:0,他引:3  
杨晓东  陈立群 《力学季刊》2005,26(1):157-162
本文研究了带有小脉动的轴向运动粘弹性梁的分岔及混沌现象。建立了系统的动力学模型。通过二阶Galerkin截断,把描述系统运动的偏微分方程离散化。利用数值方法分别分析了几种运动脉动频率时,梁随轴向运动脉动幅值,平均速度及粘弹性系数等几个参数变化时的运动分岔行为。利用Lyapunov指数识别系统的动力学行为,区分准周期振动和混沌运动。  相似文献   

20.
Experimental Observation of Chaotic Motion in a Rotor with Rubbing   总被引:3,自引:0,他引:3  
This paper presents an application for chaotic motion identification in a measured signal obtained in an experiment. The method of state space reconstruction with delay co-ordinates with the dynamic evolution described by a map is used. Poincaré diagrams, correlation dimensions and Lyapunov exponents are obtained as tools for deciding about the existence of chaotic behaviour. The method is applied to measurements of the lateral displacement of a vertical rotor experiencing rubbing and in some signals chaos is observed. The work concludes that the possibility of chaotic motion is well determined with the observation of Poincaré diagrams and computation of Lyapunov exponents. Correlation dimensions computations, strongly influenced by noise, are not convenient tools for investigation of chaotic behaviour in signals generated by mechanical systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号