首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We revisit an algorithm [called Edge Pushing (EP)] for computing Hessians using Automatic Differentiation (AD) recently proposed by Gower and Mello (Optim Methods Softw 27(2): 233–249, 2012). Here we give a new, simpler derivation for the EP algorithm based on the notion of live variables from data-flow analysis in compiler theory and redesign the algorithm with close attention to general applicability and performance. We call this algorithm Livarh and develop an extension of Livarh that incorporates preaccumulation to further reduce execution time—the resulting algorithm is called Livarhacc. We engineer robust implementations for both algorithms Livarh and Livarhacc within ADOL-C, a widely-used operator overloading based AD software tool. Rigorous complexity analyses for the algorithms are provided, and the performance of the algorithms is evaluated using a mesh optimization application and several kinds of synthetic functions as testbeds. The results show that the new algorithms outperform state-of-the-art sparse methods (based on sparsity pattern detection, coloring, compressed matrix evaluation, and recovery) in some cases by orders of magnitude. We have made our implementation available online as open-source software and it will be included in a future release of ADOL-C.  相似文献   

2.
In this paper we broadly generalize the assignment auction algorithm to solve linear minimum cost network flow problems. We introduce a generic algorithm, which contains as special cases a number of known algorithms, including the -relaxation method, and the auction algorithm for assignment and for transportation problems. The generic algorithm can serve as a broadly useful framework for the development and the complexity analysis of specialized auction algorithms that exploit the structure of particular network problems. Using this framework, we develop and analyze two new algorithms, an algorithm for general minimum cost flow problems, called network auction, and an algorithm for thek node-disjoint shortest path problem.  相似文献   

3.
In this paper we consider strongly polynomial variations of the auction algorithm for the single origin/many destinations shortest path problem. These variations are based on the idea of graph reduction, that is, deleting unnecessary arcs of the graph by using certain bounds naturally obtained in the course of the algorithm. We study the structure of the reduced graph and we exploit this structure to obtain algorithms withO (n min{m, n logn}) andO(n 2) running time. Our computational experiments show that these algorithms outperform their closest competitors on randomly generated dense all destinations problems, and on a broad variety of few destination problems.Research supported by NSF under Grant No. DDM-8903385, by the ARO under Grant DAAL03-86-K-0171, by a CNR-GNIM grant, and by a Fullbright grant  相似文献   

4.
In Akrotirianakis and Floudas (2004) we presented the theoretical foundations of a new class of convex underestimators for C 2 nonconvex functions. In this paper, we present computational experience with those underestimators incorporated within a Branch-and-Bound algorithm for box-conatrained problems. The algorithm can be used to solve global optimization problems that involve C 2 functions. We discuss several ways of incorporating the convex underestimators within a Branch-and-Bound framework. The resulting Branch-and-Bound algorithm is then used to solve a number of difficult box-constrained global optimization problems. A hybrid algorithm is also introduced, which incorporates a stochastic algorithm, the Random-Linkage method, for the solution of the nonconvex underestimating subproblems, arising within a Branch-and-Bound framework. The resulting algorithm also solves efficiently the same set of test problems.  相似文献   

5.
We examine the different ways a set ofn points in the plane can be connected to form a simple polygon. Such a connection is called apolygonization of the points. For some point sets the number of polygonizations is exponential in the number of points. For this reason we restrict our attention to star-shaped polygons whose kernels have nonempty interiors; these are callednondegenerate star-shaped polygons.We develop an algorithm and data structure for determining the nondegenerate star-shaped polygonizations of a set ofn points in the plane. We do this by first constructing an arrangement of line segments from the point set. The regions in the arrangement correspond to the kernels of the nondegenerate star-shaped polygons whose vertices are the originaln points. To obtain the data structure representing this arrangement, we show how to modify data structures for arrangements of lines in the plane. This data structure can be computed inO(n 4) time and space. By visiting the regions in this data structure in a carefully chosen order, we can compute the polygon associated with each region inO(n) time, yielding a total computation time ofO(n 5) to compute a complete list ofO(n 4) nondegenerate star-shaped polygonizations of the set ofn points.  相似文献   

6.
In this paper, we introduce a new class of PRSGs, called partitioned pseudorandom sequence generators(PPRSGs), and propose an RFID authentication protocol using a PPRSG, called S-protocol. Since most existing stream ciphers can be regarded as secure PPRSGs, and stream ciphers outperform other types of symmetric key primitives such as block ciphers and hash functions in terms of power, performance and gate size, S-protocol is expected to be suitable for use in highly constrained environments such as RFID systems. We present a formal proof that guarantees resistance of S-protocol to desynchronization and tag-impersonation attacks. Specifically, we reduce the availability of S-protocol to pseudorandomness of the underlying PPRSG, and the security of the protocol to the availability. Finally, we give a modification of S-protocol, called S*-protocol, that provides mutual authentication of tag and reader.   相似文献   

7.
Recent scientific applications produce data that are too large for storing or rendering for further statistical analysis. This motivates the construction of an optimum mechanism to choose only a subset of the available information and drawing inferences about the parent population using only the stored subset. This paper addresses the issue of estimation of parameter from such filtered data. Instead of all the observations we observe only a few chosen linear combinations of them and treat the remaining information as missing. From the observed linear combinations we try to estimate the parameter using EM based technique under the assumption that the parameter is sparse. In this paper we propose two related methods called ASREM and ESREM. The methods developed here are also used for hypothesis testing and construction of confidence interval. Similar data filtering approach already exists in signal sampling paradigm, for example, Compressive Sampling introduced by Candes et al. (Commun Pure Appl Math 59(8):1207–1223, 2006) and Donoho (IEEE Trans Inf Theory 52: 1289–1306, 2006). The methods proposed in this paper are not claimed to outperform all the available techniques of signal recovery, rather our methods are suggested as an alternative way of data compression using EM algorithm. However, we shall compare our methods to one standard algorithm, viz., robust signal recovery from noisy data using min-\(\ell _{1}\) with quadratic constraints. Finally we shall apply one of our methods to a real life dataset.  相似文献   

8.
We describe a unified framework of aesthetic criteria and complexity measures for drawing planar graphs with polylines and curves. This framework includes several visual properties of such drawings, including aspect ratio, vertex resolution, edge length, edge separation, and edge curvature, as well as complexity measures such as vertex and edge representational complexity and the area of the drawing. In addition to this general framework, we present algorithms that operate within this framework. Specifically, we describe an algorithm for drawing any n-vertex planar graph in an O(n) × O(n) grid using polylines that have at most two bends per edge and asymptotically-optimal worst-case angular resolution. More significantly, we show how to adapt this algorithm to draw any n-vertex planar graph using cubic Bézier curves, with all vertices and control points placed within an O(n) × O(n) integer grid so that the curved edges achieve a curvilinear analogue of good angular resolution. All of our algorithms run in O(n) time.  相似文献   

9.

A framework is proposed to simultaneously cluster objects and detect anomalies in attributed graph data. Our objective function along with the carefully constructed constraints promotes interpretability of both the clustering and anomaly detection components, as well as scalability of our method. In addition, we developed an algorithm called Outlier detection and Robust Clustering for Attributed graphs (ORCA) within this framework. ORCA is fast and convergent under mild conditions, produces high quality clustering results, and discovers anomalies that can be mapped back naturally to the features of the input data. The efficacy and efficiency of ORCA is demonstrated on real world datasets against multiple state-of-the-art techniques.

  相似文献   

10.

K-Nearest Neighbours (k-NN) is a popular classification and regression algorithm, yet one of its main limitations is the difficulty in choosing the number of neighbours. We present a Bayesian algorithm to compute the posterior probability distribution for k given a target point within a data-set, efficiently and without the use of Markov Chain Monte Carlo (MCMC) methods or simulation—alongside an exact solution for distributions within the exponential family. The central idea is that data points around our target are generated by the same probability distribution, extending outwards over the appropriate, though unknown, number of neighbours. Once the data is projected onto a distance metric of choice, we can transform the choice of k into a change-point detection problem, for which there is an efficient solution: we recursively compute the probability of the last change-point as we move towards our target, and thus de facto compute the posterior probability distribution over k. Applying this approach to both a classification and a regression UCI data-sets, we compare favourably and, most importantly, by removing the need for simulation, we are able to compute the posterior probability of k exactly and rapidly. As an example, the computational time for the Ripley data-set is a few milliseconds compared to a few hours when using a MCMC approach.

  相似文献   

11.
A semiregular relative difference set (RDS) in a finite group E which avoids a central subgroup C is equivalent to a cocycle which satisfies an additional condition, called orthogonality. However the basic equivalence relation, cohomology, on cocycles, does not preserve orthogonality, leading to the perception that orthogonality is essentially a combinatorial property. We show this perception is false by discovering a natural atomic structure within cohomology classes, which discriminates between orthogonal and non‐orthogonal cocycles. This atomic structure is determined by an action we term the shift action of the group G = E/C on cocycles, which defines a stronger equivalence relation on cocycles than cohomology. We prove that for each triple (C, E, G), the set of equivalence classes of semiregular RDS in E relative to C is in one to one correspondence with the set of shift‐orbits of the (Aut(C) × Aut(G))‐orbits of orthogonal cocycles. This determines a new algorithm for detecting and classifying central semiregular RDS. We demonstrate it, and propose a 7‐parameter classification scheme for equivalence classes of central semiregular relative difference sets. © 2000 John Wiley & Sons, Inc. J Combin Designs 8: 330–346, 2000  相似文献   

12.
The aim of this article is to develop a supervised dimension-reduction framework, called spatially weighted principal component analysis (SWPCA), for high-dimensional imaging classification. Two main challenges in imaging classification are the high dimensionality of the feature space and the complex spatial structure of imaging data. In SWPCA, we introduce two sets of novel weights, including global and local spatial weights, which enable a selective treatment of individual features and incorporation of the spatial structure of imaging data and class label information. We develop an efficient two-stage iterative SWPCA algorithm and its penalized version along with the associated weight determination. We use both simulation studies and real data analysis to evaluate the finite-sample performance of our SWPCA. The results show that SWPCA outperforms several competing principal component analysis (PCA) methods, such as supervised PCA (SPCA), and other competing methods, such as sparse discriminant analysis (SDA).  相似文献   

13.
In this paper we model infinite processes with finite configurations as infinite games over finite graphs. We investigate those games, called update games, in which each configuration occurs an infinite number of times during a two-person play. We also present an efficient polynomial-time algorithm (and partial characterization) for deciding if a graph is an update network.  相似文献   

14.
Abstract. In this paper we explore some novel aspects of visibility for stationary and moving points inside a simple polygon P . We provide a mechanism for expressing the visibility polygon from a point as the disjoint union of logarithmically many canonical pieces using a quadratic-space data structure. This allows us to report visibility polygons in time proportional to their size, but without the cubic space overhead of earlier methods. The same canonical decomposition can be used to determine visibility within a frustum, or to compute various attributes of the visibility polygon efficiently. By exploring the connection between visibility polygons and shortest-path trees, we obtain a kinetic algorithm that can track the visibility polygon as the viewpoint moves along polygonal paths inside P , at a polylogarithmic cost per combinatorial change in the visibility or in the flight plan of the point. The combination of the static and kinetic algorithms leads to a new static algorithm in which we can trade off space for increased overhead in the query time. As another application, we obtain an algorithm which computes the weak visibility polygon from a query segment inside P in output-sensitive time.  相似文献   

15.
We define the timetable constrained distance minimization problem (TCDMP) which is a sports scheduling problem applicable for tournaments where the total travel distance must be minimized. The problem consists of finding an optimal home-away assignment when the opponents of each team in each time slot are given. We present an integer programming, a constraint programming formulation and describe two alternative solution methods: a hybrid integer programming/constraint programming approach and a branch and price algorithm. We test all four solution methods on benchmark problems and compare the performance. Furthermore, we present a new heuristic solution method called the circular traveling salesman approach (CTSA) for solving the traveling tournament problem. The solution method is able to obtain high quality solutions almost instantaneously, and by applying the TCDMP, we show how the solutions can be further improved.  相似文献   

16.
A framework for modelling the safety of an engineering system using a fuzzy rule-based evidential reasoning (FURBER) approach has been recently proposed, where a fuzzy rule-base designed on the basis of a belief structure (called a belief rule base) forms a basis in the inference mechanism of FURBER. However, it is difficult to accurately determine the parameters of a fuzzy belief rule base (FBRB) entirely subjectively, in particular for complex systems. As such, there is a need to develop a supporting mechanism that can be used to train in a locally optimal way a FBRB initially built using expert knowledge. In this paper, the methods for self-tuning a FBRB for engineering system safety analysis are investigated on the basis of a previous study. The method consists of a number of single and multiple objective nonlinear optimization models. The above framework is applied to model the system safety of a marine engineering system and the case study is used to demonstrate how the methods can be implemented.  相似文献   

17.
A second-order bundle method to minimize the maximum eigenvalue function   总被引:2,自引:0,他引:2  
In this paper we present a nonsmooth algorithm to minimize the maximum eigenvalue of matrices belonging to an affine subspace of n×n symmetric matrices. We show how a simple bundle method, the approximate eigenvalue method can be used to globalize the second-order method developed by M.L. Overton in the eighties and recently revisited in the framework of the ?-Lagrangian theory. With no additional assumption, the resulting algorithm generates a minimizing sequence. A geometrical and constructive proof is given. To prove that quadratic convergence is achieved asymptotically, some strict complementarity and non-degeneracy assumptions are needed. We also introduce new variants of bundle methods for semidefinite programming. Received: February 9, 1998 / Accepted: May 2, 2000?Published online September 20, 2000  相似文献   

18.
Abstract

An algorithm for isotonic regression is called a structure algorithm if it searches for a “solution partition”—that is, a class of sets on each of which the isotonic regression is a constant. We discuss structure algorithms for partially ordered isotonic regression. In this article we provide a new class of structure algorithms called the isotonic block class (IBC) type algorithms. One of these is called the isotonic block class with recursion method (IBCR) algorithm, which works for partially ordered isotonic regression. It is a generalization of the pooled adjacent violators algorithm and is simpler than the min-max algorithm. We also give a polynomial time algorithm—the isotonic block class with stratification (IBCS) algorithm for matrix-ordered isotonic regression. We demonstrate the efficiency of our IBCR algorithm by using simulation to estimate the relative frequencies of the numbers of level sets of isotonic regressions on certain two-dimensional grids with the matrix order.  相似文献   

19.
In a recent paper Subba Rao and Gabr (J. Time Ser. Anal. (1987), in press) considered the estimation of the spectrum and the inverse spectrum based on the method by Pisarenko (Geophys. J. Roy. Astronom. Soc. 28 (1972), 511–531). The asymptotic properties of these estimates were studied using the properties of Wishart matrices. In this paper we show how the method can be extended to the estimation of the bispectral density function, an important tool in the study of non-Gaussian time series. All these methods of estimation are illustrated with simulated examples. In the illustrations considered, the emphasis is on the detection of periodicities in the “signal” (possibly in the presence of noise). We also considered an example based on real data. These data arise in the study of the earth's magnetic reversals and the detection of periodicities.  相似文献   

20.
In this work we address a technique for effectively clustering points in specific convex sets, called homogeneous boxes, having sides aligned with the coordinate axes (isothetic condition). The proposed clustering approach is based on homogeneity conditions, not according to some distance measure, and, even if it was originally developed in the context of the logical analysis of data, it is now placed inside the framework of Supervised clustering. First, we introduce the basic concepts in box geometry; then, we consider a generalized clustering algorithm based on a class of graphs, called incompatibility graphs. For supervised classification problems, we consider classifiers based on box sets, and compare the overall performances to the accuracy levels of competing methods for a wide range of real data sets. The results show that the proposed method performs comparably with other supervised learning methods in terms of accuracy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号