首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An experimental investigation of nonlinear interactions between shear Alfvén waves in a laboratory plasma is presented. Two Alfvén waves, generated by a resonant cavity, are observed to beat together, driving a pseudomode at the beat frequency. The pseudomode then scatters the Alfvén waves, generating a series of sidebands. The observed interaction is very strong, with the normalized amplitude of the driven pseudomode comparable to the normalized magnetic field amplitude (deltaB/B) of the interacting Alfvén waves.  相似文献   

2.
Finite-amplitude intrinsic Alfvén waves exist pervasively in astrophysical and solar-terrestrial environment. It is generally believed that linear wave-particle resonant interaction between thermal protons and Alfvén waves is ineffective when the proton beta is low. However, this Letter demonstrates that the ions can be heated by Alfvén waves via nonresonant nonlinear interaction. Contrary to the customary expectation, it is found that the lower the plasma beta value, the more effective is the heating process. It is also shown that the ion temperature increase is more prominent along perpendicular direction.  相似文献   

3.
This Letter presents a calculation of the power spectra of weakly turbulent Alfvén waves and fast magnetosonic waves ("fast waves") in low- plasmas. It is shown that three-wave interactions transfer energy to high-frequency fast waves and, to a lesser extent, high-frequency Alfvén waves. High-frequency waves produced by MHD turbulence are a promising explanation for the anisotropic heating of minor ions in the solar corona.  相似文献   

4.
We present a new channel for the nonlocal transport of wave energy from the large (MHD) scales to the small (kinetic) scales generated by the resonant decay of MHD Alfvén waves into kinetic Alfvén waves. This process does not impose any restriction on the wave numbers or frequencies of initial MHD waves, which makes it superior compared to the mechanisms of spectral transport studied before. Because of dissipative properties of the nonlinearly driven kinetic Alfvén waves, the decay leads to plasma heating and particle acceleration, which is observed in a variety of space and astrophysical plasmas. Two examples in the solar corona and the terrestrial magnetosphere are briefly discussed.  相似文献   

5.
采用柱螺旋坐标系 ,把广义磁流体力学方程组简化为四元一阶微分方程组。在ω/ωci→ 0时 ,该方程组化为Hain L櫣st方程 ;而当p→ 0 时 ,即是KAppert理论。在这两种情况下 ,Alfv啨n波共振层都是奇异的。Alfv啨n波共振层的奇异性来源于极限的选取谠独爰薜那?,离子的惯性会使理想磁流体中Alfv啨n波共振层的奇异性消失 ,且使磁流体力学波之间相互耦合  相似文献   

6.
采用粒子模拟方法,研究沿背景磁场方向传播的低频Alfvén波对磁化等离子体加热的物理过程.模拟结果表明:离子在垂直和平行于背景磁场的方向都得到明显的加热,在非共振加热阶段,垂直方向比平行方向的加热效果更加显著,形成温度各向异性;在随机加热阶段,垂直和平行方向的温度最终达到饱和且趋于一致.加热过程中,离子所获得动力学温度的最大值由外加磁场能量密度与等离子体密度的比值决定,与Alfvén波的频率及振幅无关;离子在平行于背景磁场方向上被加速,并最终获得相当于Alfvén波相速度大小的流速.  相似文献   

7.
A novel method of exciting shear Alfvén waves using electrodes inserted in a plasma was developed for basic study of Alfvén eigenmodes in a heliotron/torsatron plasma. The electrodes can induce excitation current along the confinement field line, and generate magnetic perturbations perpendicular to the confinement field. By sweeping the frequency of the current in a cold plasma, the toroidicity-induced Alfvén eigenmode was resonantly excited at the predicted frequency and radial location. Plasma response to the applied magnetic perturbations indicates a fairly large damping rate caused by continuum damping.  相似文献   

8.
We identify drift-kinetic Alfvén waves in the vicinity of a reconnection X line on the Earth's magnetopause. The dispersive properties of these waves have been determined using wavelet interferometric techniques applied to multipoint observations from the Cluster spacecraft. Comparison of the observed wave dispersion with that expected for drift-kinetic Alfvén waves shows close agreement. The waves propagate outwards from the X line suggesting that reconnection is a kinetic Alfvén wave source. Energetic O+ ions observed in these waves indicate that reconnection is a driver of auroral ion outflow.  相似文献   

9.
A helical wave launching structure is analyzed to determine the spectrum of Alfvén waves that it can excite. Using an ideal MHD plasma model, the effectiveness of this helical coil for producing Alfvén wave heating in the Proto-Cleo stellarator is investigated. It is found that significant energy absorption should occur. The amount of absorption and the frequency range over which it is greatest are dependent on the shape of the radial profiles of the confining magnetic field and the plasma density.  相似文献   

10.
Two factors favor the use of relatively low frequencies (below a few megahertz) for heating large fusion plasmas. The first is that supplying the necessary few hundred megawatts of radio frequency power is already within current technological possibilities. The second is the exploitation of well-separated resonances of Alfvén waves inside the plasma-filled reactor cavity to greatly simplify the antenna structure. The large minor radius and high plasma density in TFTR-class and reactor tokamaks will accommodate fast-wave toroidal eigenmodes at frequencies which are well below all the cyclotron frequencies of ions of the fuel gas and of most impurities (carbon, oxygen, iron). Electron transit-time magnetic pumping and Landau damping provide adequate absorption mechanisms, but care is necessary to achieve RF power deposition deep inside the plasma.  相似文献   

11.
Enhanced plasma heat conductivity in the presence of kinetic Alfvén waves (KAW) is predicted theoretically. The enhancement is shown to be strongest when the electron collision frequency exceeds the particle transit frequency in the wave field. Alfvén waves (both KAW and ideal MHD Alfvén eigenmodes generating the KAW) are studied in a shot of the Wendelstein 7-AS stellarator. On the basis of these results, strong thermal crashes observed during bursting Alfvénic activity in the mentioned shot are explained.  相似文献   

12.
We present a model for compressible sub-Alfvénic isothermal magnetohydrodynamic (MHD) turbulence in low- beta plasmas and numerically test it. We separate MHD fluctuations into three distinct families: Alfvén, slow, and fast modes. We find that production of slow and fast modes by Alfvénic turbulence is suppressed. As a result, Alfvén modes in compressible regime exhibit scalings and anisotropy similar to those in incompressible regime. Slow modes passively mimic Alfvén modes. However, fast modes show isotropy and a scaling similar to acoustic turbulence.  相似文献   

13.
Observations at the Earth's magnetopause identify mode conversion from surface to kinetic Alfvén waves at the Alfvén resonance. Kinetic Alfvén waves radiate into the magnetosphere from the resonance with parallel scales up to the order of the geomagnetic field-line length and spectral energy densities obeying a k(perpendicular)(-2.4) power law. Amplitudes at the Alfvén resonance are sufficient to both demagnetize ions across the magnetopause and provide field-aligned electron bursts. These waves provide diffusive transport across the magnetopause sufficient for boundary layer formation.  相似文献   

14.
Magnetohydrodynamic (MHD) turbulence in the solar wind is observed to show the spectral behavior of classical Kolmogorov fluid turbulence over an inertial subrange and departures from this at short wavelengths, where energy should be dissipated. Here we present the first measurements of the electric field fluctuation spectrum over the inertial and dissipative wave number ranges in a Beta > or approximately = 1 plasma. The k(-5/3) inertial subrange is observed and agrees strikingly with the magnetic fluctuation spectrum; the wave phase speed in this regime is shown to be consistent with the Alfvén speed. At smaller wavelengths krho(i) > or = 1 the electric spectrum is enhanced and is consistent with the expected dispersion relation of short-wavelength kinetic Alfvén waves. Kinetic Alfvén waves damp on the solar wind ions and electrons and may act to isotropize them. This effect may explain the fluidlike nature of the solar wind.  相似文献   

15.
The expansion of a dense (initially, n(lpp)/n(0)>1) laser-produced plasma into an ambient magnetized plasma ( n(0) = 2 x 10(12) cm(-3)) capable of supporting Alfvén waves has been studied. The interaction results in the production of shear Alfvén waves as well as large density perturbations (Delta n/n(0) approximately 0.3) associated with the moving dense plasma. The waves propagate away from the target and are observed to become plasma-column resonances. Spatial patterns of the wave magnetic fields are measured and are used to estimate the coupling efficiency of the laser energy and the kinetic energy of the dense plasma into wave energy.  相似文献   

16.
Laboratory observations of enhanced loss of fast electrons trapped in a magnetic mirror geometry irradiated by shear Alfvén waves (SAW) are reported. A population of runaway electrons generated by second harmonic electron-cyclotron-resonance heating, as evidenced by the production of hard x rays with energy up to 3?MeV, is subjected to SAW launched with a rotating magnetic field antenna. It is observed that the SAW dramatically affect the trapped fast electrons and scatter them out of the magnetic mirror despite any obvious resonance. The results could have implications on the techniques of artificial reduction of energetic electrons in the inner radiation belt.  相似文献   

17.
Neutral-beam-driven compressional Alfvén eigenmodes at frequencies below the ion cyclotron frequency have been observed and identified for the first time in the National Spherical Torus Experiment. The modes are observed as a broad spectrum of nearly equally spaced peaks in the frequency range from approximately 0.2omega(ci) to approximately 1.2omega(ci). The frequency has a scaling with toroidal field and plasma density consistent with Alfvén waves. The modes have been observed with high bandwidth magnetic pickup coils and with a reflectometer.  相似文献   

18.
The dispersion relations for the compressional Alfvén waves in a two-ion species plasma of deuterium and hydrogen are calculated for a configuration which includes a vacuum layer between the cylindrical plasma and the conducting wall. The presence of the vacuum layer strongly affects the propagation of the compressional Alfvén wave, permitting some branches to propagate and penetrate the plasmacolumn over most frequencies in the ion-cyclotron range. Basic Alfvén-wave propagation and heating experiments in two-ion species consequently should be possible using tokamak and mirror devces with minor radii smaller than the Alfvén wavelength.  相似文献   

19.
A new type of global shear Alfvén eigenmode is found in tokamak plasmas where the mode localization is in the region intersecting the Alfvén continuum. The eigenmode is formed by the coupling of two solutions from two adjacent gaps (akin to potential wells) in the shear Alfvén continuum. For tokamak plasmas with reversed magnetic shear, it is shown that the toroidicity-induced solution tunnels through the continuum to match the ellipticity-induced Alfvén eigenmode so that the resulting solution is continuous at the point of resonance with the continuum. The existence of these double-gap Alfvén eigenmodes allows for potentially new ways of coupling edge fields to the plasma core in conditions where the core region is conventionally considered inaccessible. Implications include new approaches to heating and current drive in fusion plasmas as well as its possible use as a core diagnostic in burning plasmas.  相似文献   

20.
Vlasov theory and one-dimensional hybrid simulations are used to study the effects that compressible fluctuations driven by parametric instabilities Alfvén-cyclotron waves have on proton velocity distributions. Field-aligned proton beams are generated during the saturation phase of the wave-particle interaction, with a drift speed which is slightly greater than the Alfvén speed and is maintained until the end of the simulation. The main part of the distribution becomes anisotropic due to phase mixing as is typically observed in the velocity distributions measured in the fast solar wind. We identify the key instabilities and also find that, even in the parameter regime where fluid theory appears to be appropriate, strong kinetic effects still prevail.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号