首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
单液流锌镍电池锌负极性能及电池性能初步研究   总被引:1,自引:1,他引:1  
对单液流锌镍电池锌电极在电解液流动状态下,电沉积锌形貌随电流密度的变化进行表征,结果表明,随充电电流密度的增大电沉积锌层逐渐致密化,没有枝晶生成.组装了容量为2Ah的电池,并进行长时间充放电性能研究.测试结果该电池的平均充电电压为1.84 V,平均放电电压1.65 V,平均库仑效率达到96%,能量效率达到了86%.  相似文献   

2.
近年来电动汽车、电动自行车等交通工具快速发展,便携式仪器仪表、各种动力工具也在不断增长,这些产品的快速发展直接导致了一个庞大而迅猛发展的动力型电池市场,2004年全球销售各类小型动力型二次电池已达到70亿美元.  相似文献   

3.
杨建锋  周震涛 《合成化学》2007,15(B11):203-204
随着石油资源的日益紧张及燃油汽车对环境污染的日趋严重,用电池作动力的电动汽车受到各国政府的高度重视。锌镍电池以其优异^11的电气性能、原材料丰富、成本低等特点,是未来电动车车辆主要的候选电池。但锌负极充放电循环过程中存在枝晶、形变、钝化、自放电(腐蚀析氢)等问题,解决前两者的关键是抑制放电产物锌酸盐在电解液中的溶解。为此,人们提出了两种有效的电解液体系。  相似文献   

4.
纳米ZnO改性锌电极的性能;纳米ZnO;锌电极;循环可逆性;放电容量  相似文献   

5.
锂离子二次电池碳负极材料的改性   总被引:5,自引:1,他引:5  
吴宇平  万春荣 《电化学》1998,4(3):286-292
作为锂离子二次电池的碳负极材料,其改性方面的研究内容主要有:引入非金属元素,引入金属元素,处理表面及其它方面。纺入的非金属元素有硼,硅,氮,磷和硫。引入的金属元素有钾,铝,镓和钒,镍,钴,铜,铁等过渡金属元素。表面处理的方法包括氧化,形成表面层等。  相似文献   

6.
通过电化学测试、 扫描电子显微镜观察和X射线衍射分析研究了电解液流速、 电流密度和锌沉积面容量三者关系及对锌镍单液流电池充放电性能和负极锌沉积形貌的影响. 结果表明, 锌沉积面容量是影响锌镍单液流电池充放电效率和负极锌沉积形貌的最主要因素, 电解液流速不宜过高或过低. 随着锌沉积面容量的增大, 电池的充放电效率和循环稳定性对电流密度的变化更为敏感, 适宜的电解液流速范围变窄. 锌沉积面容量在25 mA·h/cm2以上, 锌沉积皆呈海绵状. 在较低锌沉积面容量下, 电解液流速也较低时, 海绵锌沉积较为均匀致密. 而在高的锌沉积面容量下, 海绵状锌沉积的团簇和颗粒变大, 不均匀性加重, 仅在适中的电解液流速(7.1 L/min)下, 锌沉积部分致密规整, 电池具有较好的充放电性能.  相似文献   

7.
Because of the advantages of high safety, environment-friendliness, affordability, and ease of processing, aqueous rechargeable zinc batteries (ARZBs) are promising candidates for next-generation large-scale energy storage systems. In recent years, various cathode materials based on vanadium/manganese/cobalt oxides, Prussian blue analogs, and organic compounds have been reported. Among them, manganese dioxide (MnO2) is widely used in ARZBs due to their outstanding advantages of low toxicity, eco-friendliness, and high capacity (616 mAh∙g−1 based on two-electron transfer). However, the diversity of the crystal structures of MnO2 and the unpredictability of the electrochemical reaction make it difficult to investigate the specific internal storage mechanism, which impedes further development of the optimal modification strategies. To date, the main recognized energy storage mechanisms are (de)intercalation and dissolution-deposition mechanisms. In the traditional (de)intercalation mechanism, the predominant issues related to MnO2 during the cycling process include Mn dissolution, irreversible phase transformation, structural collapse, and sluggish ion diffusion kinetics. On the other hand, the detailed reaction path for the dissolution-deposition mechanism, which was developed in recent years, remains controversial. In addition, the incomplete dissolution-deposition of MnO2 and the highly acidic environment inevitably leads to corrosion and hydrogen evolution of the zinc anode, as well as low Coulombic efficiency. Accordingly, optimization strategies for different reaction mechanisms have been proposed to make zinc-manganese batteries more competitive. For the (de)intercalation mechanism, modification of composite materials and nanostructure optimization strategies can be adopted to inhibit the dissolution of MnO2 and increase the number of highly active reaction sites, thus enhancing the electrochemical performance. Moreover, the guest pre-intercalation strategy can help optimize the crystal structure of MnO2, preventing the collapse of the internal structure during cycling. Besides, defect engineering and element doping strategies focus on regulating the distribution of the electronic structure for affecting the properties of MnO2, resulting in lowering the energy barrier of zinc insertion. For the dissolution-deposition mechanism, the introduction of a neutral acetate and a halide mediator can effectively facilitate the dissolution-deposition of MnO2. Meanwhile, metal element catalysis can accelerate the reaction kinetics of the MnO2 dissolution-deposition, so that high-rate performance can be achieved. Furthermore, the decoupling battery system can separate the cathodic and anodic electrolytes to restrain the hydrogen and oxygen evolution reactions and enhance the potential difference. The flow battery system can effectively eliminate the influence of concentration polarization and stabilize the ion concentration in the electrolytes, thus leading to a large capacity (> 100 mAh). Undoubtedly, MnO2 as a high-capacity, high-voltage cathode material has broad development prospects for ARZBs. Here, we systematically summarize the crystal structures and reaction mechanisms of MnO2. We also discuss the optimization strategies toward advanced MnO2 cathode materials for resolving the highlighted issues in zinc-manganese batteries, which are expected to provide research directions for the design and development of high-performance ARZBs.   相似文献   

8.
水系锌二次电池凭借其安全性高、环境友好、成本低廉、能量密度较高等诸多优势,有望应用于下一代大规模储能系统。电池的发展依赖于电极材料,二氧化锰由于其高丰度、低成本、毒性小等优势,在水系锌二次电池领域得到广泛应用。本文将从二氧化锰的晶体结构、反应机理及电化学性能出发,对其在水系锌二次电池中的研究进展进行系统综述。特别地,针对其容量低、循环稳定性差等问题,本文从储能机理(包括嵌入-脱嵌机制和溶解-沉积机制)角度出发,总结相对应的优化策略,为先进水系锌锰二次电池的设计开发提供参考。  相似文献   

9.
橄榄石型LiFePO4具有高的理论比容量、高倍率特性、优越的电化学和热稳定性能、循环寿命长且绿色环保等优点,被认为是新一代动力型锂离子电池理想的正极材料之一.LiFePO4因本身结构的缺陷导致了其极低的电导率和Li+扩散速率,限制了该材料在动力电池的中实际应用.本文综述了通过表面包覆修饰、金属阳离子晶体结构内掺杂和导电...  相似文献   

10.
锂离子二次电池碳负极材料的改性   总被引:2,自引:1,他引:2  
通过热处理,得到了以密胺树脂为基体的掺杂有磷的碳材料,并用元素分析、XPS、XBD进行了分析.结果表明磷酸加入以后,对氮原子的含量影响不大,但其键合状态发生了变化,使有利于可逆容量提高的graphene氮的相对含量增加,导致碳材料的可逆容量随磷酸加入量的变化而发生变化,最大可逆容量可达516mAHg-1  相似文献   

11.
陈永红  魏亦军徐俊 《应用化学》2004,21(12):1285-1289
以 1 0mol/L硫酸为介质 ,于 0 8V恒电位下 ,在纳米TiO2 (Nano TiO2 )膜电极上实现了苯胺 (Aniline)的电化学聚合 ,借助透射电镜、X射线衍射、红外光谱等对制得的Nano TiO2 /聚苯胺 (Nano TiO2 /PANI)复合膜进行了表征。用Nano TiO2 │PANI作为二次电池的正极 ,Zn为负极 ,在不同的电流密度下对Zn│Nano TiO2 PANI二次电池的充放电性能进行了研究。结果表明 ,二次电池首次充电容量可达 98 0 4mA·h/g ,充放电效率为 91 6 7% ,充放电曲线平稳  相似文献   

12.
锂离子二次电池正极材料镍酸锂的量子化学研究   总被引:4,自引:0,他引:4       下载免费PDF全文
利用周期性体系的Hartree-Fock方法计算了以LiC6/LiNiO2锂离子二次电池的平均电压,结果与实验值相差 15%。计算表明,NiO2中嵌入一个Li原子变成LiNiO2后,负电荷主要从Li转移到O上,转移到Ni上的负电荷仅约20%,讨论了其对Jahn-Tell效应的影响。以Li0.5NiO2作为嵌锂中间物的代表,研究了锂离子的可能迁移路径。通过对NiO2和LiNiO2的电子态密度的计算,研究了NiO2在嵌锂过程中的能带变化及其对电极的电化学性质的影响。  相似文献   

13.
以1.0 mol/L硫酸为介质,于0.8 V恒电位下,在纳米TiO2(Nano-TiO2)膜电极上实现了苯胺(Aniline)的电化学聚合,借助透射电镜、 X射线衍射、红外光谱等对制得的Nano-TiO2/聚苯胺(Nano-TiO2/PANI)复合膜进行了表征. 用Nano-TiO2│PANI作为二次电池的正极,Zn为负极,在不同的电流密度下对Zn│Nano-TiO2-PANI二次电池的充放电性能进行了研究. 结果表明,二次电池首次充电容量可达98.04 mA·h/g,充放电效率为91.67%,充放电曲线平稳.  相似文献   

14.
电解液流速对锌镍单液流电池性能的影响   总被引:1,自引:0,他引:1  
通过电化学测试、扫描电子显微镜观察和X射线衍射分析研究了电解液流速、电流密度和锌沉积面容量三者关系及对锌镍单液流电池充放电性能和负极锌沉积形貌的影响. 结果表明,锌沉积面容量是影响锌镍单液流电池充放电效率和负极锌沉积形貌的最主要因素,电解液流速不宜过高或过低. 随着锌沉积面容量的增大,电池的充放电效率和循环稳定性对电流密度的变化更为敏感,适宜的电解液流速范围变窄. 锌沉积面容量在25 mA·h/cm2以上,锌沉积皆呈海绵状. 在较低锌沉积面容量下,电解液流速也较低时,海绵锌沉积较为均匀致密. 而在高的锌沉积面容量下,海绵状锌沉积的团簇和颗粒变大,不均匀性加重,仅在适中的电解液流速(7.1 L/min)下,锌沉积部分致密规整,电池具有较好的充放电性能.  相似文献   

15.
对Q235碳钢片和D310硅钢片表面表面镍-磷-硅酸锌纳米复合化学镀层,用SEM观察外貌,称重法测定厚度;10%NaCl、1%H2S加速腐蚀试验,10%CuSO4溶液点滴试验循环伏安(CV)、抗粘性及抗高温氧化试验等测定其性能。用X-射线电子谱(XPS)及俄歇电子能谱(AES)测定其价态及组成。结果表明其性能优镍-磷镀层和其它微米复合化学镀层,表面的镀层Q235碳钢片优于D310硅钢片表面的镀层,镀层的原子百分组成为:D235碳钢片:Ni79.00,P10.06,Zn2.01,Si1.88,O5.87,C1.18;D310硅钢片:Ni80.50,P10.67,Zn1.70,Si1.52,O4.83,C0.78.  相似文献   

16.
以金属氯化物为金属源,硫脲为硫源,聚乙二醇和乙二醇为混合溶剂,采用溶剂热法一步合成了球形的铜锌锡硫纳米颗粒.利用X射线衍射仪(XRD),扫描电子显微镜(SEM)和透射电子显微镜(TEM)分析了铜锌锡硫纳米颗粒的物相、结构、形貌;利用电池测试系统对以铜锌锡硫纳米颗粒为锂离子电池负极材料组装的锂离子电池的电化学性能进行了测试.结果表明:所得到的产物为具有锌黄锡矿结构的纯相铜锌锡硫,颗粒直径在300~500nm.铜锌锡硫纳米颗粒作为锂离子电池的负极材料具有较好的稳定性,有望在锂离子电池研究和应用中得到推广.  相似文献   

17.
随着锂离子电池在动力和规模化储能等新能源领域应用的不断拓展,具有特殊功能且满足特定使用需求隔膜的设计准则、制备/改性方法及表征技术亟需系统深入研究。针对锂离子电池高性能和高安全性的要求,研究人员已通过结构设计和表面化学改性等策略优化了隔膜的本征特性,并通过系列表征技术探讨了隔膜的功能化改性对锂离子电池电化学性能的影响。基于以上背景,本文从离子传输、枝晶形核与生长、及安全性能三个方面详细探讨了隔膜对电池性能影响的关键因素及其改性方法,并系统总结了隔膜结构、物化特性、力学性能、热学性能以及电化学性能的表征技术,以期为功能隔膜的合理设计,从而优化锂离子电池性能提供理论和实践指导。同时,本文对隔膜未来的进一步研究和发展提出了展望。  相似文献   

18.
采用一种简单方法制备具有优异氧还原反应(ORR)活性的、无金属的氮掺杂碳材料.以双氰胺(DCD)为氮源,蔗糖、β-环糊精和壳聚糖为不同的碳源,通过简单的热解法制备出氮掺杂的类石墨烯纳米片催化剂CN-nanosh(suc)、CN-nanosh(cyc)和CN-nanosh(ch).这些催化剂在碱性溶液中表现出优异的ORR...  相似文献   

19.
采用共沉淀法将氢氧化镧(La(OH)3)负载在锌铝水滑石(Zn-Al LDHs)的表面,扫描电镜(SEM)、X射线衍射(XRD)表明La(OH)3成功负载在锌铝水滑石表面,并且负载后的锌铝水滑石仍然为六边形片状晶体,且粒径均匀、分散性好。La(OH)3质量其具有较好的可逆性、更大的正腐蚀电位及较小的电池内阻。5%La(OH)3@Zn-Al LDHs在经过80次循环后,其循环保持率为94.84%。  相似文献   

20.
中国是全球最大的电池生产和消费大国,其一次电池的产量已远超过美国和日本,位居全球第一,且二次电池产量也仅居日本和韩国之后,位居世界第三。2004年中国的电池产量超过280亿只(占全球电池供应量的25%),其中锂电池为9.4亿只、镍镉电池为10亿只、镍氢电池为8亿只、碱性电池为220亿只;2005年中国的的电池产量超过230亿只,继续位居全球第一,其中一次电池和二次电池的产量分别为190亿只和37亿只(即锂离子电池为22亿只、镉镍电池10亿只和氢镍电池5亿只)。由于欧盟委员会颁布了电池指令(2002/525/EC),生产者责任制的逐步实施,西方国家的电池生产企业正面临日趋严格的环保压力,迫使美、日等国的电池产业向中国等欠发达国家转移,在中国的长三角、环渤海湾或珠三角地区独资设厂、控股或参股中国电池企业。仅珠三角地区目前就有数十家产值过亿元的知名电池企业,如深圳比亚迪股份公司、深圳比克电池公司、深圳雄韬电源科技公司、深圳今星光实业公司、深圳豪鹏科技公司、东莞市迈科科技公司、金霸王(中国)有限公司、东莞高力电池公司、广东汤浅蓄电池公司、日本TDK电池、江门市三七电池公司、佛山市南海新力电池公司,此外,还有很多未进入电源行业统计数据的小型二次电池企业。据估计,大型电池企业的废品率一般在1%~3%、极片生产过程中的边角料1%~2%,而小型企业的残次品率更高。以2005年为例,中国二次电池行业的废品在1亿只左右,约重3000吨,按钴镍含量20%计算,其价值在3亿元左右,但对于电池企业而言,建立专门的废品处理工厂是不经济的,而一般采用定期挂牌拍卖方式处理,然而采用传统的选冶工艺,难以满足废旧电池资源化循环利用在经济性、生态性、高效性、综合性等方面的基本要求。此外,随着手机型号的变更,大量库存电池也需要物尽其用。 佛山市南海邦谱镍钴技术有限公司是创建于2003年的专业从事各种废旧镍氢、镍镉、锂离子二次电池等废镍、废钴回收与处理的再生资源技术企业,总占地面积达50000平方米,固定资产1000万,各类高精加工和自主创新设备(专利号:200620059829.X)约100余套,经过近4年的发展,现已发展成中国最大的库存二次电池再利用、废旧二次电池拆解及其再资源化的废镍钴原料供应商之一。公司现有员工约100余人,其中专职技术人员20余名,分别来自清华大学、中南大学等知名院校。公司创建伊始就严格按照ISO9001:2000、ISO14001:2004的要求进行生产和管理。凭借专业化、有序化的生产管理,目前电池月回收量达1000万只,废镍、废钴月处理利用量达300吨,2006年产值突破12亿元。自2007年1月以来,佛山市南海邦普镍钴公司与清华大学核研院正式建立校企战略合作伙伴关系,共同开发和改进废旧镍氢、锂离子电池拆解技术,拟建一座年处理3000吨含20%镍的电池废料中试基地;并在清华大学核研院设立“清华核研院-镍钴技术奖学金”,奖励从事循环经济和环保事业的优秀人才。目前已成功设计了废旧镍氢电池回收再利用的成套技术和生产设备,且在锂离子聚合物回收资源再生及无害化处理工艺方面已获得重大突破,并投资1000万元建设邦普镍钻技术研发中心,将拥有原子吸收光谱仪、紫外可见光分光光度计、X射线粉体衍射仪、激光粒度分析仪和全谱直读等离子体发射光谱仪等先进检测仪器。2007年4月19日,国家科技部社发司资环处、中国有色金属工业协会再生金属分会、广东省科技厅、佛山市科技局等各级领导曾莅临公司视察工作,对公司的未来战略发展提出了殷切希望。 本文拟以废旧二次电池的拆解与回收处理为例,着重介绍佛山市南海邦普镍钴公司在库存电池的再利用、废旧电池的拆解技术等领域的研究进展。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号