首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present nonlinear properties of the low-frequency nonlinear electrostatic waves in a nonuniform bounded magneto-plasma with the equilibrium density and parallel ion velocity gradients along the radial direction. The existence of electrostatic global vortices in a cylindrical magnetoplasma is established. The present results should help to understand the properties of coherent vortical structures in the presence of a magnetic field-aligned ion flow with a radial ion velocity gradient in laboratory magnetoplasmas that are bounded and nonuniform.  相似文献   

2.
A specific, genuinely three-dimensional mechanism of rogue wave formation, in a late stage of the modulational instability of a perturbed Stokes deep-water wave, is recognized through numerical experiments. The simulations are based on fully nonlinear equations describing weakly three-dimensional potential flows of an ideal fluid with a free surface in terms of conformal variables. Spontaneous formation of zigzag patterns for wave amplitude is observed in a nonlinear stage of the instability. If initial wave steepness is sufficiently high (ka>0.06), these coherent structures produce rogue waves. The most tall waves appear in turns of the zigzags. For ka<0.06, the structures decay typically without formation of steep waves.  相似文献   

3.
Particle transport in magnetized plasmas is investigated with a fluid model of drift wave turbulence. An analytical calculation shows that magnetic field curvature and thermodiffusion drive an anomalous pinch. The curvature driven pinch velocity is consistent with the prediction of turbulence equipartition theory. The thermodiffusion flux is found to be directed inward for a small ratio of electron to ion pressure gradient, and it reverses its sign when increasing this ratio. Numerical simulations confirm that a turbulent particle pinch exists. It is mainly driven by curvature for equal ion and electron heat sources. The sign and relative weights of the curvature and thermodiffusion pinches are consistent with the analytical calculation.  相似文献   

4.
We present the results of kinetic numerical simulations that demonstrate the existence of a novel branch of electrostatic nonlinear waves driven by particle trapping processes. These waves have an acoustic-type dispersion with phase speed comparable to the ion thermal speed and would thus be heavily Landau damped in the linear regime. At variance with the ion-acoustic waves, this novel electrostatic branch can exist at a small but finite amplitude even for low values of the electron to ion temperature ratio. Our results provide a new interpretation of observations in space plasmas, where a significant level of electrostatic activity is observed in the high frequency region of the solar-wind turbulent spectra.  相似文献   

5.
夏蒙棼  仇韵清 《物理学报》1985,34(3):322-331
当波的强度超过随机性阈值时,将出现动力学随机性。粒子不仅在速度空间中发生扩散,而且在位形空间中k×B0的方向上出现随机扩散和定向流。它们可以远比经典过程强得多。在环等离子体中,波引起的速度扩散可驱动比新经典输运强得多的扩散流和靴带电流,后者提供了波驱动电流的一种可能的方案。 关键词:  相似文献   

6.
The influence of low-frequency waves of kinetic nature induced by electron trapping in backward Stimulated Raman Scattering (SRS) is investigated. Semi-lagrangian Vlasov-Maxwell simulations are carried out not only for periodic boundary conditions but also in the case of an open plasma with parabolic shape, in optical mixing. We provide a numerical example of generation of KEEN (kinetic electrostatic electron nonlinear) waves nonlinearly induced from the SRS through a mechanism we first here elucidate. In particular we identify a process of backward scattering of the SRS probe light from the so generated KEEN waves, which may provide a mechanism for the possible experimental observation and measurement of such nonlinear structures.  相似文献   

7.
Dong-Ning Yue 《中国物理 B》2022,31(4):45205-045205
Generation of nonlinear structures, such as stimulated Raman side scattering waves, post-solitons and electron vortices, during ultra-short intense laser pulse transportation in near-critical-density (NCD) plasmas is studied by using multi-dimensional particle-in-cell (PIC) simulations. In two-dimensional geometries, both P- and S-polarized laser pulses are used to drive these nonlinear structures and to check the polarization effects on them. In the S-polarized case, the scattered waves can be captured by surrounding plasmas leading to the generation of post-solitons, while the main pulse excites convective electric currents leading to the formation of electron vortices through Kelvin-Helmholtz instability (KHI). In the P-polarized case, the scattered waves dissipate their energy by heating surrounding plasmas. Electron vortices are excited due to the hosing instability of the drive laser. These polarization dependent physical processes are reproduced in two different planes perpendicular to the laser propagation direction in three-dimensional simulation with linearly polarized laser driver. The current work provides inspiration for future experiments of laser-NCD plasma interactions.  相似文献   

8.
A multiple scales technique is employed to solve the fluid-Maxwell equations describing a weakly nonlinear circularly polarized electromagnetic pulse in magnetized plasma. A nonlinear Schrödinger-type (NLS) equation is shown to govern the amplitude of the vector potential. The conditions for modulational instability and for the existence of various types of localized envelope modes are investigated in terms of relevant parameters. Right-hand circularly polarized (RCP) waves are shown to be modulationally unstable regardless of the value of the ambient magnetic field and propagate as bright-type solitons. The same is true for left-hand circularly polarized (LCP) waves in a weakly to moderately magnetized plasma. In other parameter regions, LCP waves are stable in strongly magnetized plasmas and may propagate as dark-type solitons (electric field holes). The evolution of envelope solitons is analyzed numerically, and it is shown that solitons propagate in magnetized plasma without any essential change in amplitude and shape.  相似文献   

9.
We report the first direct evidence of detuning of stimulated Brillouin scattering (SBS) by a velocity gradient, which was achieved by directly measuring the frequency shift of the SBS-driven acoustic wave relative to the local resonant acoustic frequency. We show that in the expanding part of the plasma, ion-acoustic waves are driven off resonance which leads to the saturation of the SBS instability. These measurements are well reproduced by fluid simulations that include the measured flow.  相似文献   

10.
N Nagesha Rao  Ram K Varma 《Pramana》1978,10(3):247-255
The propagation of ion-acoustic K-dV solitary waves in weakly inhomogeneous, collisionless plasmas with gradients both in the density and the temperature of the ions has been considered. The electrons are assumed to be hot and isothermal, and the ions to be warm and adiabatic. The reductive perturbation analysis of the fluid equations is then carried out. The zero order quantities existing in the system due to the presence of the inhomogeneities are taken into account consistently and a set of ‘stretched coordinates’ appropriate for the inhomogeneous system is employed. A more general modified K-dV equation has been derived and its soliton solution is obtained explicitly. It is shown that as the soliton propagates along the temperature gradient, its amplitude and the velocity decrease, and the width increases. Further, it is found that when the two gradients are in opposite directions, the amplitude of the soliton remains constant.  相似文献   

11.
Internal gravity wavepackets induce a horizontal mean flow that interacts nonlinearly with the waves if they are of moderately large amplitude. In this work, a new theoretical derivation for the wave-induced mean flow of internal gravity waves is presented. Using this we examine the weakly nonlinear evolution of internal wavepackets in two dimensions. By restricting the two-dimensional waves to be horizontally periodic and vertically localized, we derive the nonlinear Schrödinger equation describing the vertical and temporal evolution of the amplitude envelope of non-Boussinesq waves. The results are compared with fully nonlinear numerical simulations restricted to two dimensions. The initially small-amplitude wavepacket grows to become weakly nonlinear as it propagates upward due to non-Boussinesq effects. In comparison with the results of fully nonlinear numerical simulations, the nonlinear Schrödinger equation is found to capture the dominant initial behaviour of the waves, indicating that the interaction of the waves with the induced horizontal mean flow is the dominant mechanism for weakly nonlinear evolution. In particular, due to modulational stability, hydrostatic waves propagate well above the level at which linear theory predicts they should overturn, whereas strongly non-hydrostatic waves, which are modulationally unstable, break below the overturning level predicted by linear theory.  相似文献   

12.
The possibility of new weakly nonlinear solitary waves in nonlocal elastic media is demonstrated. The properties of these waves are determined by the characteristic features of wave dispersion in the linear approximation, and their velocity and amplitude cannot exceed certain limiting values. In the case of small amplitudes and velocities close to the velocity of sound, the profile of the waves under consideration coincides with the profile of the soliton described by the Korteweg-de Vries equation. When the amplitude and velocity of the aforementioned waves reach their limiting values, the wave profile sharpens. It is concluded that the propagation of such waves in rocks and soils is possible.  相似文献   

13.
This work presents theoretical and numerical discussion on the dynamics of ion-acoustic solitary wave for weakly relativistic regime in unmagnetized plasma comprising non-extensive electrons, Boltzmann positrons and relativistic ions. In order to analyse the nonlinear propagation phenomena, the Korteweg–de Vries (KdV) equation is derived using the well-known reductive perturbation method. The integration of the derived equation is carried out using the ansatz method and the generalized Riccati equation mapping method. The influence of plasma parameters on the amplitude and width of the soliton and the electrostatic nonlinear propagation of weakly relativistic ion-acoustic solitary waves are described. The obtained results of the nonlinear low-frequency waves in such plasmas may be helpful to understand various phenomena in astrophysical compact object and space physics.  相似文献   

14.
为了了解深径比对邱克拉斯基(Czochralski)结构内旋转驱动流动的影响,利用有限容积法进行了三维非稳态数值模拟。结果表明:随着液池深径比的增加,流动逐渐加强,当旋转速度超过某一临界值后,流动转变为三维非稳态振荡流动。随着液池深径比的增加,速度波振荡幅度增大,速度波波数和周向传播方向都随之改变;浅液池内坩埚旋转作用占主导地位,速度波传播方向与坩埚旋转方向相同,深液池内晶体旋转大于坩埚旋转对流动的影响,速度波传播方向和晶体旋转方向相同。  相似文献   

15.
In the context of toroidal gyrokinetic simulations, it is shown that a hierarchy of damped modes is excited in the nonlinear turbulent state. These modes exist at the same spatial scales as the unstable eigenmodes that drive the turbulence. The larger amplitude subdominant modes are weakly damped and exhibit smooth, large-scale structure in velocity space and in the direction parallel to the magnetic field. Modes with increasingly fine-scale structure are excited to decreasing amplitudes. In aggregate, damped modes define a potent energy sink. This leads to an overlap of the spatial scales of energy injection and peak dissipation, a feature that is in contrast with more traditional turbulent systems.  相似文献   

16.
The specific history of collisionless drift waves is marked by focusing upon current‐driven, shear‐modified, and electron‐temperature‐gradient modes. Studies of current‐driven collisionless drift waves started in 1977 using the Innsbruck Q machine and was continued over 30 years until 2009 with topics such as plasma heating by drift waves in fusion‐oriented confinement and space/astrophysical plasmas. Superposition of perpendicular flow velocity shear on parallel shear intensively modifies the drift wave characteristics through the variation of its azimuthal structure, where the parallel‐shear driven instability is suppressed for strong perpendicular shears, while hybrid‐ion velocity shear cause unexpected stabilization of the parallel‐shear‐modified drift wave. An electron temperature gradient can be formed easily by control of thermionic electron superimposed on ECR plasma, and is found to excite low‐frequency fluctuation in the range of drift waves (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
Magneto-acoustic waves generated by fluctuations in the Hall parameter, the electric conductivity and the stream velocity are theoretically investigated in a weakly ionized plasma streaming across a strong external magnetic field and bearing a current flowing perpendicular to both magnetic field and stream velocity. The investigations hold for seeded rare gas plasmas at any degree of seed ionization but are resticted to waves propagating in parallel or antiparallel direction to the current density vector and in parallel or antiparallel direction to the stream velocity vector and to wave lengths which are small in comparsion to the interaction length which occurs as a characteristic wave length. The influence of these waves on the mean current density and the mean Hall field intensity is calculated in case of small amplitudes and low degree of seed ionization up to second order terms. Omitting Ohmic heating the dispersion equation can be solved exactly. A phase shift exists between the fluctuations in gas density and gas velocity. The phase velocity and the amplification rate depend on the wave length. Typical results are represented in a diagram. For both types of waves the phase velocity slightly rises with increasing wave length, while the amplification rate decreases. Waves propagating in opposite direction to the current density vector are amplified, if the electron velocity exceeds a critical value. They reduce the mean current density and the mean Hall field intensity. Waves propagating in opposite direction to the stream velocity vector are also amplified except for very high degrees of seed ionization. The threshold current density is greater than that for the waves of the first type approximately by the Hall parameter as factor. At extremely high degree of seed ionization the phase velocity is directed opposite to the direction occuring at weakly ionized seed. Waves of the second type decrease the mean current density, but increase the mean Hall field intensity.  相似文献   

18.
Dust ion-acoustic solitary waves in unmagnetized quantum plasmas are studied in spherical and cylindrical geometries. Using quantum hydrodynamic model, the electrostatic waves are investigated in the weakly nonlinear limit. A deformed Korteweg-de Vries (dKdV) equation is derived by using the reductive perturbation method and its numerical solutions are also presented. The quantum diffraction and quantum statistical effects incorporated in the system modifies the characteristics of dust ion-acoustic waves in cylindrical and spherical geometries. The role of stationary dust particles in quantum plasmas are also discussed. It is shown that the cylindrical and spherical dust ion-acoustic solitary waves behave quite differently from one-dimensional planar solitary waves in quantum plasmas.  相似文献   

19.
Phase coherent interactions between drift waves and zonal flows are considered. For this purpose, mode coupling equations are derived by using a two-fluid model and the guiding center drifts. The equations are then Fourier analyzed to deduce the nonlinear dispersion relations. The latter depict the excitation of zonal flows due to the ponderomotive forces of drift waves. The flute-like zonal flows with insignificant density fluctuations have faster growth rates than those which have a finite wavelength along the magnetic field direction. The relevance of our investigation to drift wave driven zonal flows in computer simulations and laboratory plasmas is discussed. Received 5 April 2002 Published online 28 June 2002  相似文献   

20.
Asif Shah 《Physics letters. A》2009,373(45):4164-4168
The Korteweg-de Vries-Burger (KdVB) equation is derived for ion acoustic shock waves in a weakly relativistic electron-positron-ion plasma. Electrons, positrons are considered isothermal and ions are relativistic. The travelling wave solution has been acquired by employing the tangent hyperbolic method. The vivid display of the graphical results is presented and analyzed. It is observed that amplitude and steepness of the shock wave decrease with increase of the relativistic streaming factor, the positron concentration and they increase with the increase of the coefficient of kinematic viscosity and vice versa. It is determined that at low temperature the shock wave propagates, whereas at very high temperature the solitary wave propagates in the system. The results may have relevance in astrophysical plasmas as well as in inertial confinement fusion plasmas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号