首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We rely on a recent method for determining edge spectra and we use it to compute the Chern numbers for Hofstadter models on the honeycomb lattice having rational magnetic flux per unit cell. Based on the bulk-edge correspondence, the Chern number \(\sigma _\mathrm{H}\) is given as the winding number of an eigenvector of a \(2 \times 2\) transfer matrix, as a function of the quasi-momentum \(k\in (0,2\pi )\) . This method is computationally efficient (of order \(\mathcal {O}(n^4)\) in the resolution of the desired image). It also shows that for the honeycomb lattice the solution for \(\sigma _\mathrm{H}\) for flux \(p/q\) in the \(r\) -th gap conforms with the Diophantine equation \(r=\sigma _\mathrm{H}\cdot p+ s\cdot q\) , which determines \(\sigma _\mathrm{H}\mod q\) . A window such as \(\sigma _\mathrm{H}\in (-q/2,q/2)\) , or possibly shifted, provides a natural further condition for \(\sigma _\mathrm{H}\) , which however turns out not to be met. Based on extensive numerical calculations, we conjecture that the solution conforms with the relaxed condition \(\sigma _\mathrm{H}\in (-q,q)\) .  相似文献   

2.
The primary goal of KamLAND is a search for the oscillation of \({\bar{\nu }}_\mathrm{e}\) ’s emitted from distant power reactors. The long baseline, typically 180 km, enables KamLAND to address the oscillation solution of the “solar neutrino problem” with \({\bar{\nu }}_{e} \) ’s under laboratory conditions. KamLAND found fewer reactor \({\bar{\nu }}_{e} \) events than expected from standard assumptions about \(\overline{\nu }_e\) propagation at more than 9 \(\sigma \) confidence level (C.L.). The observed energy spectrum disagrees with the expected spectral shape at more than 5 \(\sigma \) C.L., and prefers the distortion from neutrino oscillation effects. A three-flavor oscillation analysis of the data from KamLAND and KamLAND + solar neutrino experiments with CPT invariance, yields \(\Delta m_{21}^2 \) = [ \(7.54_{-0.18}^{+0.19} \times \) 10 \(^{-5}\) eV \(^{2}\) , \(7.53_{-0.18}^{+0.19} \times \) 10 \(^{-5}\) eV \(^{2}\) ], tan \(^{2}\theta _{12}\) = [ \(0.481_{-0.080}^{+0.092} \) , \(0.437_{-0.026}^{+0.029} \) ], and sin \(^{2}\theta _{13}\) = [ \(0.010_{-0.034}^{+0.033} \) , \(0.023_{-0.015}^{+0.015} \) ]. All solutions to the solar neutrino problem except for the large mixing angle region are excluded. KamLAND also demonstrated almost two cycles of the periodic feature expected from neutrino oscillation effects. KamLAND performed the first experimental study of antineutrinos from the Earth’s interior so-called geoneutrinos (geo \({\bar{\nu }}_{e} \) ’s), and succeeded in detecting geo \({\bar{\nu }}_{e} \) ’s produced by the decays of \(^{238}\) U and \(^{232}\) Th within the Earth. Assuming a chondritic Th/U mass ratio, we obtain \(116_{-27}^{+28} {\bar{\nu }}_{e}\) events from \(^{238}\) U and \(^{232}\) Th, corresponding a geo \({\bar{\nu }}_{e}\) flux of \(3.4_{-0.8}^{+0.8}\times \) 10 \(^{6}\) cm \(^{-2}\)  s \(^{-1}\) at the KamLAND location. We evaluate various bulk silicate Earth composition models using the observed geo \({\bar{\nu }}_{e} \) rate.  相似文献   

3.
In this article we give a new observation of Pesin’s entropy formula, motivated from Mañé’s proof of (Ergod Theory Dyn Sys 1:95–102, 1981). Let \(M\) be a compact Riemann manifold and \(f:\,M\rightarrow M\) be a \(C^1\) diffeomorphism on \(M\) . If \(\mu \) is an \(f\) -invariant probability measure which is absolutely continuous relative to Lebesgue measure and nonuniformly-H \(\ddot{\text {o}}\) lder-continuous(see Definition 1.1), then we have Pesin’s entropy formula, i.e., the metric entropy \(h_\mu (f)\) satisfies $$\begin{aligned} h_{\mu }(f)=\int \sum _{\lambda _i(x)> 0}\lambda _i(x)d\mu , \end{aligned}$$ where \(\lambda _1(x)\ge \lambda _2(x)\ge \cdots \ge \lambda _{dim\,M}(x)\) are the Lyapunov exponents at \(x\) with respect to \(\mu .\) Nonuniformly-H \(\ddot{\text {o}}\) lder-continuous is a new notion from probabilistic perspective weaker than \(C^{1+\alpha }.\)   相似文献   

4.
Composite particles made of two fermions can be treated as ideal elementary bosons as long as the constituent fermions are sufficiently entangled. In that case, the Pauli principle acting on the parts does not jeopardise the bosonic behaviour of the whole. An indicator for bosonic quality is the composite boson normalisation ratio \(\chi _{N+1}/\chi _{N}\) of a state of \(N\) composites. This quantity is prohibitively complicated to compute exactly for realistic two-fermion wavefunctions and large composite numbers \(N\) . Here, we provide an efficient characterisation in terms of the purity \(P\) and the largest eigenvalue \(\lambda _1\) of the reduced single-fermion state. We find the states that extremise \(\chi _N\) for given \(P\) and \(\lambda _1\) , and we provide easily evaluable, saturable upper and lower bounds for the normalisation ratio. Our results strengthen the relationship between the bosonic quality of a composite particle and the entanglement of its constituents.  相似文献   

5.
Magnetism in Cu-doped, Cu \(\rm _{Si}\) –V \(\rm _{Si}\) codoped, or Cu \(\rm _{Si}\) –V \(\rm _{C}\) codoped 6H-SiC are investigated using the first principle. The total density of states for the ferromagnetic Cu \(\rm _{Si}\) at doping concentration of 0.926 at. \(\%\) shows half-metallic behavior, which leads to the total magnetic moment of 2.84  \(\rm \mu _{B}\) per supercell. The total magnetic moment increases with increasing Cu content. The long-range ferromagnetic interaction between Cu atoms can be attributed to the C-mediated double exchange through the strong \(3d\) ? \(2p\) interaction between Cu and neighboring C ones. It is important to note that both V \(\rm _{Si}\) and V \(\rm _{C}\) play a negative role in ferromagnetic coupling between Cu ions. So, to obtain a larger magnetic moment from Cu-doped 6H–SiC, we should try to avoid the appearance of V \(\rm _{Si}\) and V \(\rm _{C}\) during the process of sample preparation. Our theoretical calculations give a valuable insight on how to get a large magnetic moment from Cu-doped 6H–SiC.  相似文献   

6.
The paper reports on photoelectrical performance of the mid-wave infrared (MWIR) (111) HgCdTe high operating temperature detector for the fast response conditions. Detector structure was simulated with software APSYS by Crosslight Inc. The detailed analysis of the time response as a function of device architecture and applied voltage was performed pointing out optimal working conditions. The time response of the MWIR HgCdTe detector with 50 % cut-off wavelength of \(\lambda _{c} \approx 5.3\, \upmu \hbox {m}\) at \(T = 200\)  K was estimated at the level of \(\tau _{s} \approx \) 2,500 ps for \(V = 100\)  mV and series resistance \(R_{Series} = 510\,\Omega \) . The series resistance’s reduction enables to reach \(\tau _{s}\approx 60\!-\!500\)  ps.  相似文献   

7.
This paper inquires into the concavity of the map \(N\mapsto v_s(N)\) from the integers \(N\ge 2\) into the minimal average standardized Riesz pair-energies \(v_s(N)\) of \(N\) -point configurations on the sphere \(\mathbb {S}^2\) for various \(s\in \mathbb {R}\) . The standardized Riesz pair-energy of a pair of points on \(\mathbb {S}^2\) a chordal distance \(r\) apart is \(V_s(r)= s^{-1}\left( r^{-s}-1 \right) \) , \(s \ne 0\) , which becomes \(V_0(r) = \ln \frac{1}{r}\) in the limit \(s\rightarrow 0\) . Averaging it over the \(\left( \begin{array}{c} N\\ 2\end{array}\right) \) distinct pairs in a configuration and minimizing over all possible \(N\) -point configurations defines \(v_s(N)\) . It is known that \(N\mapsto v_s(N)\) is strictly increasing for each \(s\in \mathbb {R}\) , and for \(s<2\) also bounded above, thus “overall concave.” It is (easily) proved that \(N\mapsto v_{-2}^{}(N)\) is even locally strictly concave, and that so is the map \(2n\mapsto v_s(2n)\) for \(s<-2\) . By analyzing computer-experimental data of putatively minimal average Riesz pair-energies \(v_s^x(N)\) for \(s\in \{-1,0,1,2,3\}\) and \(N\in \{2,\ldots ,200\}\) , it is found that the map \(N\mapsto {v}_{-1}^x(N)\) is locally strictly concave, while \(N\mapsto {v}_s^x(N)\) is not always locally strictly concave for \(s\in \{0,1,2,3\}\) : concavity defects occur whenever \(N\in {\mathcal {C}}^{x}_+(s)\) (an \(s\) -specific empirical set of integers). It is found that the empirical map \(s\mapsto {\mathcal {C}}^{x}_+(s),\ s\in \{-2,-1,0,1,2,3\}\) , is set-theoretically increasing; moreover, the percentage of odd numbers in \({\mathcal {C}}^{x}_+(s),\ s\in \{0,1,2,3\}\) is found to increase with \(s\) . The integers in \({\mathcal {C}}^{x}_+(0)\) are few and far between, forming a curious sequence of numbers, reminiscent of the “magic numbers” in nuclear physics. It is conjectured that these new “magic numbers” are associated with optimally symmetric optimal-log-energy \(N\) -point configurations on \(\mathbb {S}^2\) . A list of interesting open problems is extracted from the empirical findings, and some rigorous first steps toward their solutions are presented. It is emphasized how concavity can assist in the solution to Smale’s \(7\) th Problem, which asks for an efficient algorithm to find near-optimal \(N\) -point configurations on \(\mathbb {S}^2\) and higher-dimensional spheres.  相似文献   

8.
We consider N Brownian particles moving on a line starting from initial positions \(\mathbf{{u}}\equiv \{u_1,u_2,\ldots u_N\}\) such that \(0 . Their motion gets stopped at time \(t_s\) when either two of them collide or when the particle closest to the origin hits the origin for the first time. For \(N=2\) , we study the probability distribution function \(p_1(m|\mathbf{{u}})\) and \(p_2(m|\mathbf{{u}})\) of the maximal distance travelled by the \(1^{\text {st}}\) and \(2^{\text {nd}}\) walker till \(t_s\) . For general N particles with identical diffusion constants \(D\) , we show that the probability distribution \(p_N(m|\mathbf{u})\) of the global maximum \(m_N\) , has a power law tail \(p_i(m|\mathbf{{u}}) \sim {N^2B_N\mathcal {F}_{N}(\mathbf{u})}/{m^{\nu _N}}\) with exponent \(\nu _N =N^2+1\) . We obtain explicit expressions of the function \(\mathcal {F}_{N}(\mathbf{u})\) and of the N dependent amplitude \(B_N\) which we also analyze for large N using techniques from random matrix theory. We verify our analytical results through direct numerical simulations.  相似文献   

9.
In work started in [17] and continued in this paper our objective is to study selectors of multivalued functions which have interesting dynamical properties, such as possessing absolutely continuous invariant measures. We specify the graph of a multivalued function by means of lower and upper boundary maps \(\tau _{1}\) and \(\tau _{2}.\) On these boundary maps we define a position dependent random map \(R_{p}=\{\tau _{1},\tau _{2};p,1-p\},\) which, at each time step, moves the point \(x\) to \(\tau _{1}(x)\) with probability \(p(x)\) and to \(\tau _{2}(x)\) with probability \(1-p(x)\) . Under general conditions, for each choice of \(p\) , \(R_{p}\) possesses an absolutely continuous invariant measure with invariant density \(f_{p}.\) Let \(\varvec{\tau }\) be a selector which has invariant density function \(f.\) One of our objectives is to study conditions under which \(p(x)\) exists such that \(R_{p}\) has \(f\) as its invariant density function. When this is the case, the long term statistical dynamical behavior of a selector can be represented by the long term statistical behavior of a random map on the boundaries of \(G.\) We refer to such a result as a mathematical holographic principle. We present examples and study the relationship between the invariant densities attainable by classes of selectors and the random maps based on the boundaries and show that, under certain conditions, the extreme points of the invariant densities for selectors are achieved by bang-bang random maps, that is, random maps for which \(p(x)\in \{0,1\}.\)   相似文献   

10.
In this work we extend the results of the reunion probability of \(N\) one-dimensional random walkers to include mixed boundary conditions between their trajectories. The level of the mixture is controlled by a parameter \(c\) , which can be varied from \(c=0\) (independent walkers) to \(c\rightarrow \infty \) (vicious walkers). The expressions are derived by using Quantum Mechanics formalism (QMf) which allows us to map this problem into a Lieb-Liniger gas (LLg) of \(N\) one-dimensional particles. We use Bethe ansatz and Gaudin’s conjecture to obtain the normalized wave-functions and use this information to construct the propagator. As it is well-known, depending on the boundary conditions imposed at the endpoints of a line segment, the statistics of the maximum heights of the reunited trajectories have some connections with different ensembles in Random Matrix Theory. Here we seek to extend those results and consider four models: absorbing, periodic, reflecting, and mixed. In all four cases, the probability that the maximum height is less or equal than \(L\) takes the form \(F_N(L)=A_N\sum _{\varvec{k}\in \Omega _{\text {B}}} \mathrm{e}^{-\sum _{j=1}^Nk_j^2}\mathcal {V}_N(\varvec{k})\) , where \(A_N\) is a normalization constant, \(\mathcal {V}_N(\varvec{k})\) contains a deformed and weighted Vandermonde determinant, and \(\Omega _{\text {B}}\) is the solution set of quasi-momenta \(\varvec{k}\) obeying the Bethe equations for that particular boundary condition.  相似文献   

11.
The available data on \(|\Delta B| = |\Delta S| = 1\) decays are in good agreement with the Standard Model when permitting subleading power corrections of about \(15\,\%\) at large hadronic recoil. Constraining new-physics effects in \(\mathcal {C}_{7}^{\mathrm {}}\) , \(\mathcal {C}_{9}^{\mathrm {}}\) , \(\mathcal {C}_{10}^{\mathrm {}}\) , the data still demand the same size of power corrections as in the Standard Model. In the presence of chirality-flipped operators, all but one of the power corrections reduce substantially. The Bayes factors are in favor of the Standard Model. Using new lattice inputs for \(B\rightarrow K^*\) form factors and under our minimal prior assumption for the power corrections, the favor shifts toward models with chirality-flipped operators. We use the data to further constrain the hadronic form factors in \(B\rightarrow K\) and \(B\rightarrow K^*\) transitions.  相似文献   

12.
13.
There are four types of two-Higgs doublet models under a discrete \(Z_2\) symmetry imposed to avoid tree-level flavor-changing neutral current, i.e. type-I, type-II, type-X, and type-Y models. We investigate the possibility to discriminate the four models in the light of the flavor physics data, including \(B_s\) \(\bar{B}_s\) mixing, \(B_{s,d} \rightarrow \mu ^+ \mu ^-\) , \(B\rightarrow \tau \nu \) and \(\bar{B} \rightarrow X_s \gamma \) decays, the recent LHC Higgs data, the direct search for charged Higgs at LEP, and the constraints from perturbative unitarity and vacuum stability. After deriving the combined constraints on the Yukawa interaction parameters, we have shown that the correlation between the mass eigenstate rate asymmetry \(A_{\Delta \Gamma }\) of \(B_{s} \rightarrow \mu ^+ \mu ^-\) and the ratio \(R=\mathcal{B}(B_{s} \rightarrow \mu ^+ \mu ^-)_\mathrm{exp}/ \mathcal{B}(B_{s} \rightarrow \mu ^+ \mu ^-)_\mathrm{SM}\) could be a sensitive probe to discriminate the four models with future precise measurements of the observables in the \(B_{s} \rightarrow \mu ^+ \mu ^-\) decay at LHCb.  相似文献   

14.
We study the phenomenon of “crowding” near the largest eigenvalue \(\lambda _\mathrm{max}\) of random \(N \times N\) matrices belonging to the Gaussian Unitary Ensemble of random matrix theory. We focus on two distinct quantities: (i) the density of states (DOS) near \(\lambda _\mathrm{max}\) , \(\rho _\mathrm{DOS}(r,N)\) , which is the average density of eigenvalues located at a distance \(r\) from \(\lambda _\mathrm{max}\) and (ii) the probability density function of the gap between the first two largest eigenvalues, \(p_\mathrm{GAP}(r,N)\) . In the edge scaling limit where \(r = \mathcal{O}(N^{-1/6})\) , which is described by a double scaling limit of a system of unconventional orthogonal polynomials, we show that \(\rho _\mathrm{DOS}(r,N)\) and \(p_\mathrm{GAP}(r,N)\) are characterized by scaling functions which can be expressed in terms of the solution of a Lax pair associated to the Painlevé XXXIV equation. This provides an alternative and simpler expression for the gap distribution, which was recently studied by Witte et al. in Nonlinearity 26:1799, 2013. Our expressions allow to obtain precise asymptotic behaviors of these scaling functions both for small and large arguments.  相似文献   

15.
Compelling experimental evidences of neutrino oscillations and their implication that neutrinos are massive particles have given neutrinoless double beta decay ( \(\beta \beta 0\nu \) ) a central role in astroparticle physics. In fact, the discovery of this elusive decay would be a major breakthrough, unveiling that neutrino and antineutrino are the same particle and that the lepton number is not conserved. It would also impact our efforts to establish the absolute neutrino mass scale and, ultimately, understand elementary particle interaction unification. All current experimental programs to search for \(\beta \beta 0\nu \) are facing with the technical and financial challenge of increasing the experimental mass while maintaining incredibly low levels of spurious background. The new concept described in this paper could be the answer which combines all the features of an ideal experiment: energy resolution, low cost mass scalability, isotope choice flexibility and many powerful handles to make the background negligible. The proposed technology is based on the use of arrays of silicon detectors cooled to 120 K to optimize the collection of the scintillation light emitted by ultra-pure crystals. It is shown that with a 54 kg array of natural CaMoO \(_4\) scintillation detectors of this type it is possible to yield a competitive sensitivity on the half-life of the \(\beta \beta 0\nu \) of \(^{100}\) Mo as high as \(\sim \) \(10^{24}\)  years in only 1 year of data taking. The same array made of \(^{40}\) Ca \(^{\mathrm {nat}}\) MoO \(_4\) scintillation detectors (to get rid of the continuous background coming from the two neutrino double beta decay of \(^{48}\) Ca) will instead be capable of achieving the remarkable sensitivity of \(\sim \) \(10^{25}\)  years on the half-life of \(^{100}\) Mo \(\beta \beta 0\nu \) in only 1 year of measurement.  相似文献   

16.
Observing light-by-light scattering at the large hadron collider (LHC) has received quite some attention and it is believed to be a clean and sensitive channel to possible new physics. In this paper, we study the diphoton production at the LHC via the process \({{pp}}\rightarrow {{p}}\gamma \gamma {{p}}\rightarrow {{p}}\gamma \gamma {{p}}\) through graviton exchange in the large extra dimension (LED) model. Typically, when we do the background analysis, we also study the double Pomeron exchange of \(\gamma \gamma \) production. We compare its production in the quark–quark collision mode to the gluon–gluon collision mode and find that contributions from the gluon–gluon collision mode are comparable to the quark–quark one. Our result shows, for extra dimension \(\delta =4\) , with an integrated luminosity \(\mathcal{L} = 200\,\mathrm{fb}^{-1}\) at the 14 TeV LHC, that diphoton production through graviton exchange can probe the LED effects up to the scale \({M}_{S}=5.06 (4.51, 5.11)\,\mathrm{TeV}\) for the forward detector acceptance \(\xi _1 (\xi _2, \xi _3)\) , respectively, where \(0.0015<\xi _1<0.5\) , \(0.1<\xi _2<0.5\) , and \(0.0015<\xi _3<0.15\) .  相似文献   

17.
We report connection conductivity ( \(C_{\rm c}\) ) of adhesive which including \(\hbox {In}_2\hbox {O}_3\) \(\hbox {SnO}_2\) (ITO) particles developed for fabrication of stacked-type-multi-junction solar cells. The commercial 20- \(\upmu \) m sized ITO particles were heated in vacuum at temperature ranging from 800 to 1,300  \(^{\circ }{\rm C}\) for 10 min to increase \(C_{\rm c}\) . 6.2 wt% ITO particles were dispersed in commercial Cemedine adhesive gel to form 100 samples structured with n-type Si/adhesive/n-type Si (n-Si sample) and p-type Si/adhesive/p-type Si (p-Si sample). Current density as a function of voltage (J–V) characteristics gave \(C_{\rm c}\) . It ranged from 4.3 to 1.0 S/cm \(^2\) for the n-Si sample with 800 \(^{\circ }{\rm C}\) heat-treated ITO particles. Its standard deviation was 0.59 S/cm \(^2\) . On the other hand, it ranged from 2.0 to 0.6 S/cm \(^2\) for the p-Si sample with 800  \(^{\circ }{\rm C}\) heat-treated ITO particles. Its standard deviation was 0.22 S/cm \(^2\) . The distribution of \(C_{\rm c}\) mainly resulted from contact efficiency of ITO particles to substrate. We theoretically estimated that present \(C_{\rm c}\) achieved a low loss of the power conversion efficiency ( \(E_{\rm ff}\) ) lower than 0.3 % in the application of fabrication of multi-junction solar cell with an intrinsic \(E_{\rm ff}\) of 30 % and an open circuit voltage above 1.9 V.  相似文献   

18.
We analyze the impact of data from the full Run 1 of the LHC at 7 and 8 TeV on the CMSSM with \(\mu > 0\) and \(<0\) and the NUHM1 with \(\mu > 0\) , incorporating the constraints imposed by other experiments such as precision electroweak measurements, flavour measurements, the cosmological density of cold dark matter and the direct search for the scattering of dark matter particles in the LUX experiment. We use the following results from the LHC experiments: ATLAS searches for events with \({E\!\!/}_{T}\) accompanied by jets with the full 7 and 8 TeV data, the ATLAS and CMS measurements of the mass of the Higgs boson, the CMS searches for heavy neutral Higgs bosons and a combination of the LHCb and CMS measurements of \(\mathrm{BR}(B_s \rightarrow \mu ^+\mu ^-)\) and \(\mathrm{BR}(B_d \rightarrow \mu ^+\mu ^-)\) . Our results are based on samplings of the parameter spaces of the CMSSM for both \(\mu >0\) and \(\mu <0\) and of the NUHM1 for \(\mu > 0\) with 6.8 \(\times 10^6\) , 6.2 \(\times 10^6\) and 1.6 \(\times 10^7\) points, respectively, obtained using the MultiNest tool. The impact of the Higgs-mass constraint is assessed using FeynHiggs 2.10.0, which provides an improved prediction for the masses of the MSSM Higgs bosons in the region of heavy squark masses. It yields in general larger values of \(M_h\) than previous versions of FeynHiggs, reducing the pressure on the CMSSM and NUHM1. We find that the global \(\chi ^2\) functions for the supersymmetric models vary slowly over most of the parameter spaces allowed by the Higgs-mass and the \({E\!\!/}_{T}\) searches, with best-fit values that are comparable to the \(\chi ^2/\mathrm{dof}\) for the best Standard Model fit. We provide 95 % CL lower limits on the masses of various sparticles and assess the prospects for observing them during Run 2 of the LHC.  相似文献   

19.
Room-temperature ferromagnetism has been found in Ga-deficient GaN grown using the direct reaction of Ga \(_{2}\) O \(_{3}\) powder with NH \(_{3}\) gas. The observed magnetism in GaN induced by Ga vacancies is investigated both experimentally and theoretically. First-principles calculations reveal that the spontaneous spin polarization is created by the 3.0  \(\mu _\mathrm{B}\) local moment for GaN and magnetism originates from the polarization of the unpaired 2 \(p\) electrons of N surrounding the Ga vacancy. At the same time, the band gap can be also adjusted by changing the Ga-vacancy concentration.  相似文献   

20.
“Post-sphaleron baryogenesis”, a fresh and profound mechanism of baryogenesis accounts for the matter–antimatter asymmetry of our present universe in a framework of Pati–Salam symmetry. We attempt here to embed this mechanism in a non-SUSY SO(10) grand unified theory by reviving a novel symmetry breaking chain with Pati–Salam symmetry as an intermediate symmetry breaking step and as well to address post-sphaleron baryogenesis and neutron–antineutron oscillation in a rational manner. The Pati–Salam symmetry based on the gauge group \(\mathrm{SU}(2)_L \times \mathrm{SU}(2)_{R} \times \mathrm{SU}(4)_C\) is realized in our model at \(10^{5}\) \(10^{6}\)  GeV and the mixing time for the neutron–antineutron oscillation process having \(\Delta B=2\) is found to be \(\tau _{n-\bar{n}} \simeq 10^{8}\) \(10^{10}\)  s with the model parameters, which is within the reach of forthcoming experiments. Other novel features of the model include low scale right-handed \(W^{\pm }_R\) , \(Z_R\) gauge bosons, explanation for neutrino oscillation data via the gauged inverse (or extended) seesaw mechanism and most importantly TeV scale color sextet scalar particles responsible for an observable \(n\) \(\bar{n}\) oscillation which may be accessible to LHC. We also look after gauge coupling unification and an estimation of the proton lifetime with and without the addition of color sextet scalars.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号