首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The scattering of flexural wave by multiple circular holes in an infinite thin plate is analytically solved by using the multipole Trefftz method. The dynamic moment concentration factor (DMCF) along the edge of circular holes is determined. Based on the addition theorem, the solution of the field represented by multiple coordinate systems centered at each circle can be transformed into one coordinate system centered at one circle, where the boundary conditions are given. In this way, a coupled infinite system of simultaneous linear algebraic equations is derived as an analytical model for the scattering of flexural wave by multiple holes in an infinite plate subject to the incident flexural wave. The formulation is general and is easily applicable to dealing with the problem containing multiple circular holes. Although the number of hole is not limited in our proposed method, the numerical results of an infinite plate with three circular holes are presented in the truncated finite system. The effects of both incident wave number and the central distance among circular holes on the DMCF are investigated. Numerical results show that the DMCF of three holes is larger than that of one, when the space among holes is small and meanwhile the specified direction of incident wave is subjected to the plate.  相似文献   

2.
The elastoplastic state of thin cylindrical shells with two equal circular holes is analyzed with allowance made for finite deflections. The shells are made of an isotropic homogeneous material. The load is internal pressure of given intensity. The distribution of stresses along the hole boundary and in the stress concentration zone (when holes are closely spaced) is analyzed by solving doubly nonlinear boundary-value problems. The results obtained are compared with the solutions that allow either for physical nonlinearity (plastic strains) or geometrical nonlinearity (finite deflections) and with the numerical solution of the linearly elastic problem. The stresses near the holes are analyzed for different distances between the holes and nonlinear factors.Translated from Prikladnaya Mekhanika, Vol. 40, No. 10, pp. 107–112, October 2004.  相似文献   

3.
In this work, a set of parametric experiments was conducted on a superplastic material (eutectic tin–lead alloy) with one or more pre-drilled holes in each specimen. The small-sized holes were for simulating microvoids that occur and grow during superplastic forming. All holes were axially aligned with the tensile axis. The results revealed an increase in ductility with the number of holes up to 10 holes and a decrease thereafter. The ductility enhancement was explained based on the m-curve as due to a rise in the strain rate sensitivity locally around the holes. The decrease was explained due to strong void interaction that resulted in shear failure. This was further verified by a separate set of experiments of only two interacting voids with various interspacing. Finally, the void size versus applied strain was fully characterized and the results supported the ductility observations.  相似文献   

4.
The effects of surface energy on the interaction between holes or edge are investigated. Three typical problems are discussed: (1) an infinite plate containing two holes of unequal size subjected to an all-round tension, (2) a circle disc containing an eccentric hole subjected to uniform pressure on either external or internal surface, (3) a semi-infinite plate containing an unstressed circular hole subjected to a uniform tension parallel to its straight edge. The problems are solved by series expansion in bipolar coordinates. The results show that the surface energy significantly affects the stress concentrations around the holes as the size of the holes shrinks to nanometers. Meanwhile, the interaction between the holes or edge influences the stress distribution around the holes or edge, which becomes evident as the holes or edge close to each other and is affected by the surface effect significantly.  相似文献   

5.
The elastoplastic state of thin cylindrical shells weakened by two circular holes is analyzed. The centers of the holes are on the directrix of the shell. The shells are made of an isotropic homogeneous material and subjected to internal pressure of given intensity. The distribution of stresses along the hole boundaries and over the zone where they concentrate (when the distance between the holes is small) is analyzed using approximate and numerical methods to solve doubly nonlinear boundary-value problems. The data obtained are compared with the solutions of the physically nonlinear (plastic strains taken into account) and geometrically nonlinear (finite deflections taken into account) problems and with the numerical solution of the linearly elastic problem. The stress-strain state near the two holes is analyzed depending on the distance between them and the nonlinearities accounted for __________ Translated from Prikladnaya Mekhanika, Vol. 41, No. 11, pp. 88–95, November 2005.  相似文献   

6.
Conclusions We determined the relationship between the nature of the stress distribution on the hole surface in a flexible plate as a function of thickness. We observed a great difference between the stress densities in flattened, thin and moderate-thickness conical shells and the stress concentrations near holes in thin cylindrical shells and thin, almost cylindrical, conical shells. The stress distribution near the hole in flattened conical shells of moderate thickness is similar to the stress distribution near the holes in flexible, thick plates. During loading of conical shells by an axial force, the lowest stress concentration factor near the holes is obtained when the axis of the hole is parallel to the shell axis. As the thickness of the shell is increased, the stress concentration factor near the holes increases.Kiev University. Ukrainian Institute of Water Management Engineers, Rovno. Translated from Prikladnaya Mekhanika, Vol. 24, No. 9, pp. 65–70, September, 1988.  相似文献   

7.
The problem of an isotropic linear elastic plane or half-plane weakened by a finite number of small holes is considered. The analysis is based on the complex potential method of Muskhelishvili as well as on the theory of compound asymptotic expansions by Maz’ya. An asymptotic expansion of the solution in terms of the relative hole radii is constructed. This expansion is asymptotically valid in the whole domain, i.e. both in the vicinity of the holes and in the far-field. The approach leads to closed-form approximations of the field variables and does not require any numerical approximation. Several examples of the interaction between holes or holes and an edge are presented.  相似文献   

8.
The stress–strain state of a hollow cylinder (pipe) with lateral holes is considered. The pipe is under the action of internal and external hydrostatic pressures P1 and P2 and also a temperature effect. Such a pipe is used in oil–gas recovery, rocket engineering, chemical machinery industry and etc. There is no detailed analytic solution of this problem in literature to date. The number of holes through which a liquid or gas can flow into the pipe interior (and vice versa) depends on the loads, the size of the cross-section and the material of the pipe. The proper selection of the arrangement of holes and their diameters is determined from an analytic solution. In addition, the maximum boundary loads (of pressures) at which the pipe cracks is also found.  相似文献   

9.
ABSTRACT

The problem of an infinite elastic plane that contains a hole of arbitrary shape and is subjected to a concentrated unit load is considered. The Green's function (influence function) for the problem is formulated by means of two complex potential functions. This is accomplished by mapping the region that is exterior to the hole onto a unit circle. A class of closed contour hole shapes is analyzed. Green's functions for an elliptical hole and a class of triangular holes are determined. Green's functions for a class of rectangular holes are also discussed. In order to determine stress and displacement fields for the finite plane problem, Green's function is employed and an indirect boundary integral equation is formulated, with the integrand of the integral equation incorporating the effect of the hole. The contour of the hole is no longer considered a part of the boundary and only the contour of the region that is exterior to the hole is subdivided into boundary elements. Examples for elliptical and triangular holes are solved.  相似文献   

10.
The stability of shells perforated by large holes has been investigated previously [1–6]. The results published in the cited papers lead to the conclusion that the problem of the stability of shells with large holes is in a stage of vigorous development. The application of standard numerical methods in these problems is impeded by the fact that they are incapable of refining the stress concentration and local stability in the vicinity of corners of the holes and give an approximate smoothed distribution pattern of the forces and torques. Methods of approximation of the solutions in terms of regular functions [2] are complicated by the poor convergence of the corresponding series near the edges of a hole.Structural Engineering Institute, St. Petersburg. Translated from Prikladnaya Mekhanika, Vol. 30, No. 2, pp. 41–48, February, 1994.  相似文献   

11.
Experiments to measure the temperature field downstream of simulated leading-edge-region film-cooling holes were performed in an 11 m/s wind tunnel flow. Heated air was passed to a hollow 140 mm diameter cylinder in which three 10.5 mm diameter, spanwise-inclined, film-cooling holes had been machined. A fine nylon mesh, coated with encapsulated thermochromic liquid crystals, was used to measure temperature contours downstream of the holes by moving the mesh relative to the holes and adjusting the power to the air heater. The measurements indicate the extent of the lateral spreading of the coolant gas and show the influence of hole location and coolant mass flow rate on film trajectory and spreading. Received: 5 February 1998/ Accepted: 22 October 1998  相似文献   

12.
蔡守宇  张卫红  高彤  赵军 《力学学报》2019,51(4):1235-1244
为继承传统拓扑优化泡泡法变量少、精度高等优点,并克服其网格重划频繁、孔洞合并操作繁琐等不足,提出了一种基于固定网格和拓扑导数的自适应泡泡方法.该方法的主要特点是:(1)采用有限胞元固定网格分析方法计算结构力学响应,在优化过程中无需网格更新和重划分,就能保证较高的分析精度;(2)根据拓扑导数信息指导结构区域中孔洞的引入,不仅消除了优化结果对孔洞初始布局的依赖性,还能有效控制设计变量的数量;(3)引入拓扑导数阈值和孔洞影响区域新概念,实现了孔洞引入频次和位置的自适应调节,保证了拓扑优化过程的数值计算稳定性;(4)采用光滑变形隐式曲线描述孔洞边界,不仅设计参数少、变形能力强,而且便于处理孔洞间的融合/分离操作以及与固定网格分析方法的有机结合.理论分析和数值算例表明,改进后的自适应泡泡法能够消除传统泡泡法因采用拉格朗日网格和参数化B样条曲线模型而存在的实施困难,采用很少的设计变量就可获得边界光滑清晰的优化结果.   相似文献   

13.
Based on the classical laminated plate theory, a finite composite plate weakened by multiple elliptical holes is treated as an anisotropic multiple connected plate. Using the complex potential method in the plane theory of elasticity of an anisotropic body, an analytical study concerned with the stress distributions around multiple loaded holes in finite composite laminated plates subjected to arbitrary loads was performed. The analysis makes use of the Faber series expansion, conformal mapping and the least squares boundary collocation techniques. The effects of plate and hole sizes, layups, the relative distance between holes, the total number of holes and their locations on the stress distribution are studied in detail. Some conclusions are drawn.  相似文献   

14.
We consider in the nonlinear formulation the steady-state motion of an incompressible viscous fluid between two concentric spheres, into the gap between which fluid enters through one hole and leaves through a second. The holes are replaced by a source and sink, after which the boundary conditions are written in terms of the delta function. The delta function is expanded approximately in a finite series in Legendre polynomials. Depending on the number of terms, this series represents holes of various sizes. The solution to the problem is sought by expanding the desired function in a series in powers of the Reynolds number, whose coefficients are expanded in series in associated Legendre functions of the first kind. The velocity field and also the force acting on the inner sphere are found. Numerical computations are presented for holes whose aperture half-angle is 6°.  相似文献   

15.
Abstract

The optimal design of the stress state in elastic plate structures with openings is a problem of great significance in engineering practice. Achieving proper shape of hole can reduce stress concentration around the boundaries remarkably. The optimal shape of a single hole in an infinite plate under uniform stresses has been obtained by complex variable method based on different optimal criteria. The complex variable method is particularly suitable for the hole shape optimization in infinite plate, in which the continuous hole boundary can be represented by the mapping function. It can also be used to solve the shape optimization problems of two or more holes. However, because of the difficulty of finding the mapping function for multi connected domain, the holes are mapped onto slits or separately mapped onto a circle. In this article, the two symmetrical and identical holes are mapped onto an annulus simultaneously by the newly found mapping function, which has a general form. The maximum tangential stress around the boundaries is minimized to achieve the optimal hole shape. And the coefficients of mapping function which describe the boundary are calculated by differential-evolution algorithm.  相似文献   

16.
Minimizing the stress concentration around holes in uniaxially loaded finite plates is an important consideration in engineering design. One method for reducing the stress concentration around a central circular hole in a uniaxially loaded plate is to introduce smaller auxiliary holes on either side of the original hole to help smooth the flow of the tensile principal-stress trajectories past the original hole. This method has been demonstrated by Heywood and systematically studied by Erickson and Riley. Erickson and Riley show that for a central-hole diameter-to-plate width ratio of 0.222, the maximum stress reduction is up to 16 percent. In recent work, Durelliet al. show that the stress concentrations around holes in uniaxially loaded plates can be minimized by changing the hole shape itself till an optimum hole profile with constant stress values respectively on the tensile and compressive segments of the hole boundary is reached. By this technique the maximum stress reduction obtained for the above case is up to 20 percent. In the present work, starting with the optimum sizes and locations of central and auxiliary circular holes for a finite plate given by Erickson and Riley, a systematic study of the hole-shape optimization is undertaken. A two-dimensional photoelastic method is used. For a central-hole diameter-to-plate width ratio of 0.222, the reduction in stress-concentration factor obtained after hole-shape optimization is about 30 percent. It is also shown that it is possible to introduce the ‘equivalent ellipse’ concept for optimized holes.  相似文献   

17.
Using the Schwarz's alternating method and the Muskhelishvili's complex variable function techniques, an efficient and accurate stress solution for an infinite elastic plate around two elliptic holes, subjected to uniform loads on the hole boundaries and at infinity, is presented in this paper. The present algorithm can be used to compute the stress concentration factors (SCF), i.e., the ratio of the maximum tangential hoop stress to the applied uniform load, on the boundaries of the two elliptical holes of different sizes and layouts under different loading conditions, as illustrated in two numerical cases.  相似文献   

18.
Photoelastic plates made of an orthotropic material are used to model the dynamic stress state near free and reinforced circular holes under blast loading. The diffraction of stress waves by holes in a thin-walled plate is studied. Experimental data are used to analyze the dynamic stress concentration in a plate with a hole in which quasilongitudinal and quasitransverse waves propagate __________ Translated from Prikladnaya Mekhanika, Vol. 43, No. 7, pp. 73–78, July 2007.  相似文献   

19.
曾祥太  吕爱钟 《力学学报》2019,51(1):170-181
无限平板中含有任意形状单个孔的问题可以使用复变函数方法获得其应力解析解.对于无限平板中含有两个圆孔或两个椭圆孔的双连通域问题,也可以利用多种方法进行求解,比如双极坐标法、应力函数法、复变函数法以及施瓦茨交替法等.其中复变函数中的保角变换方法是获得应力解析解的一个重要方法.但目前尚未见到用此方法求解无限板中含有一个正方形孔和一个椭圆孔的问题.当板在无穷远处受有均布载荷和孔边作用垂直均布压力时,利用保角变换方法可以求解板中含有两个特定形状孔的问题.该方法将所讨论的区域映射成象平面里的一个圆环,其中最关键的一步是找出相应的映射函数.基于黎曼映射定理,提出了该映射函数一般形式,并利用最优化方法,找到了该问题的具体映射函数,然后通过孔边应力边界条件建立了求解两个解析函数的基本方程,获得了该问题的应力解析解.运用ANSYS有限单元法与结果进行了对比.研究了孔距、椭圆形孔大小和两孔布置方位对边界切向应力的影响,以及不同载荷下两孔中心线上应力分布规律.   相似文献   

20.
段明  徐更光 《爆炸与冲击》1990,10(3):272-277
本文采用自行设计加工的应力发生器装置,对被试验炸药施加上升时间为1030ms的压力加载;应用数理统计的方法(试验设计的正交法和感度试验的上下法),实验研究了含有各种空气泡的压装TNT在此压力加载下的安全性规律,并由此外推得到了不含空气泡的压装TNT在此压力加载下的安全性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号