首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Arrays of periodically disposed silver nanowires embedded in alumina were shown to be capable of conducting plasmons excited by laser illuminating one end of the array to its opposite end where surface-enhanced Raman of molecules resident among the tips of the nanowires was excited. The SERS signals, in turn, excited plasmons which propagated back to the originally illuminated ends of the nanowires where they emitted light signals that were collected and spectroscopically dispersed, in essence creating a sensor capable of exciting and collecting SERS remotely. For nanowire arrays with interwire gaps of ~11 nm and lengths of ~3.3 μm (i.e., after a ~6.6 μm round trip) the SERS signals obtained by remote sensing were rather strong, ~5% the intensity of those obtained by exciting the molecules resident among the nanowire tips directly.  相似文献   

2.
3.
Heterogeneous binary arrays of metallic nanoparticles have been constructed by consecutively depositing gold and silver into monolayers of hexagonally close-packed latex spheres at the incidence angles of 15 and -15 degrees, followed by removal of the colloidal masks. The present approach is independent of the chemical nature of both colloidal masks and deposition materials. The pattern feature of the resulting binary nanoparticle arrays is dependent on the colloidal mask registry.  相似文献   

4.
Site-selected and size-controlled iron nanoparticles were prepared on coplanar surfaces via microcontact printing of SAM-modified Au/mica electrodes and controlled-potential electrolytic reactions using ferritin biomolecules. Ferritin molecules packed like a full monolayer on 6-amino-1-hexanethiol (AHT)- and 11-amino-1-undecanethiol (AUT)-modified Au/mica surface via electrostatic interactions, which did not depend on the chain length of the amino terminal alkane thiols. After heat-treatment at 400 degrees C for 60 min, iron oxide nanoparticles (ca. 5 nm in diameter) derived from ferritin cores were observed at the Au/mica surface by atomic force microscopy (AFM). On the study on the electrochemistry of ferritin immobilized onto AHT- and AUT-modified Au/mica electrodes, the redox response of the ferritin immobilized AHT-modified electrode was clearly observed. On the other hand, no redox peak for ferritin was obtained at the AUT-modified electrode. The electron transfer between ferritin and the electrode through the AUT membrane could not take place. The difference in the electrochemical response of ferritin immobilized onto AHT- and AUT-modified Au/mica was caused by the chain length of the amino terminal alkane thiols. Uniform patterns of AHT and AUT on the Au/mica electrode surface were performed by use of a poly(dimethylsiloxane) (PDMS) stamp. After the immobilization of ferritin onto both AHT- and AUT-modified electrode surfaces, the modified electrode was applied to a -0.5 V potential for 30 min in a phosphate buffer solution. After this procedure, the PDMS stamp patterning image appeared by scanning electron microscopy (SEM) image. The SEM results induced by the size change of the ferritin core consisting of iron(III) by electrolysis.  相似文献   

5.
Multi-walled carbon nanotubes (MWNTs) supported platinum nanoparticles with narrow size distribution were prepared by an organic colloidal process with sodium citrate as the coordination reagent and stabilizer, and ethylene glycol as the reduction reagent. A nonenzymatic glucose sensor with high sensitivity based on the Pt/MWNTs electrode was demonstrated. Transmission electron microscopy (TEM) and X-ray diffraction (XRD) were employed to investigate the size distributions and the crystal structure of Pt nanoparticles on the MWNTs. The TEM images show that the Pt nanoparticles with about 2–4 nm in diameter are well dispersed on the MWNTs. The Pt/MWNTs shows high electrocatalytic activity towards the oxidation of glucose in 0.1 M NaOH solution. At +0.5 V, the Pt/MWNTs nanocomposite electrode exhibits linearity in the range of 1 mM to 23 mM (R > 0.998) glucose with a response time of 11.6 s. The detection limit is 50 μM (S/N = 3). It was demonstrated that the Pt/MWNTs electrode with high electrocatalytic activity to glucose oxidation could find application in nonenzymatic detection of glucose.  相似文献   

6.
The plasmonic properties of self-assembled layers of rod- and branched-shaped gold nanoparticles were investigated using optical techniques. Nanoparticles were synthesized by a surfactant-guided, seed-mediated growth method. The layers were obtained by gradual assembly of nanoparticles at the interface between a polar and a nonpolar solvent and were transferred to a glass slide. Polarization and angle-dependent extinction measurements showed that the layers made of gold nanorods were governed by an effective medium response. The response of the layers made by branched gold particles was characterized by random light scattering. Microscopic mapping of the spatial mode structure demonstrates a uniform optical response of the nanoparticle layers down to a submicrometer length scale.  相似文献   

7.
Our understanding of how the geometry of metallic nanostructures controls the properties of their surface plasmons, based on plasmon hybridization, is useful for developing high-performance substrates for surface enhanced spectroscopies. In this tutorial review, we outline the design of metallic nanostructures tailored specifically for providing electromagnetic enhancements for surface enhanced Raman scattering (SERS). The concepts developed for nanoshell-based substrates can be generalized to other nanoparticle geometries and scaled to other spectroscopies, such as surface enhanced infrared absorption spectroscopy (SEIRA).  相似文献   

8.
Colors of scattering light of single gold nanoparticles (AuNPs) were coded with the tricolor (RGB) system by assigning digital values to R, G and B and then this was applied to binding studies of thiols to AuNPs through RGB analysis.  相似文献   

9.
The plasmonic property of a nanostructure is highly dependent on its morphology, but there are few methods for appending a domain as the “functional group” or modifier. As a means of modulating plasmonic properties, we create and modulate Au hats on Au nanoparticles, including mortarboards, beret hats, helmets, crowns, antler hats and antenna hats. The structural control arises from the active surface growth as a result of dynamic competition between ligand absorption and metal deposition. It allows the continuous tuning of hat morphologies, from the facet-controlled growth of mortarboards, to the spreading-favored growth of beret hats and helmets, and to the vertical growth of pillars in crowns, antler hats and antenna hats. Among these plasmonic nanostructures, the mortarboards show excellent SERS enhancement of 8.1 × 105, which is among the best in colloidal nanostructures; and the antler hats show the photothermal conversion efficiency of 66.2%, which compares favorably with the literature reports.

We show that active surface growth is an effective method to create structural variety in the appending domain of Au seeds. The dynamic competition between the growth sites led to different Au hats on seeds.  相似文献   

10.
A rather simple but yet effective way to self-assemble polystyrene (PS) beads in gradient colloidal crystal topography is proposed. The PS bead concentration, solvent, and substrate have a big effect on the colloidal crystal topography. Whether the gradient-shaped crystals can form or not depends on the Bond number [Bo; the ratio of gravitational potential energy (G) to adhesive energy (E(a)), or gravitational to capillary forces]. When Bo < 1, that is, the capillary force dominates over the gravitational force, the liquid meniscus is stable. The gradient-shaped crystals can form. Otherwise, PS beads form a uniform multilayer structure.  相似文献   

11.
Plasmonic nanoparticles such as those of gold or silver have been recently investigated as a possible way to improve light absorption in thin film solar cells. Here, a simple method for the preparation of spherical plasmonic gold nanoparticles in the form of a colloidal solution is presented. The nanoparticle diameter is controlled in the range from several nm to tens of nm depending on the synthesis parameters with the size dispersion down to 14 %. The synthesis is based on thermal decomposition and reduction of the chloroauric acid in the presence of a stabilizing capping agent (surfactant) that is very slowly injected into the hot solvent. The surfactant prevents uncontrolled nanoparticle aggregation during the growth process. The nanoparticle size and shape depend on the type of the stabilizing agent. Surfactants with different lengths of the hydrocarbon chains such as Z-octa-9-decenylamine (oleylamine) with AgNO3 and polyvinylpyrrolidone with AgNO3 were used for the steric stabilization. Hydrodynamic diameter of the gold nanoparticles in the colloidal solution was determined by dynamic light scattering while the size of the nanoparticle metallic core was found by small-angle X-ray scattering. The UV-VIS-NIR spectrophotometer measurements revealed a plasmon resonance absorption in the 500–600 nm range. Self-assembled nanoparticle arrays on a silicon substrate were prepared by drop casting followed by spontaneous evaporation of the solvent and by a modified Langmuir-Blodgett deposition. The degree of perfection of the self-assembled arrays was analyzed by scanning electron microscopy and grazing-incidence small-angle X-ray scattering. Homogeneous close-packed hexagonal ordering of the nanoparticles stretching over large areas was evidenced. These results document the viability of the proposed nanoparticle synthesis for the preparation of high-quality plasmonic templates for thin film solar cells with enhanced power conversion efficiency, surface enhanced Raman scattering, and other applications.  相似文献   

12.
It is well-known that high ionic strength promotes colloid aggregation. Here we show that, by controlling this aggregation process, we can produce high yields of homodoublet and heterodoublet polymer colloids. The aggregation process is started by increasing the ionic strength to roughly 250 mM KCl. After approximately the rapid flocculation time, we quench the "reaction" by mixing in a large quantity of deionized water, which dilutes the ionic strength and prevents further aggregation. At this point, the suspension consists primarily of singlet and doublet particles. Through heating above the glass transition temperature of the polymers, the doublets are fused together and remain intact even after sonication. It is also shown that heterodoublets can include a silica particle together with a polymer colloid. The salting out-quenching-fusing technique is a rapid, easy-to-perform, repeatable process for fabricating colloidal doublets from polymers and other materials.  相似文献   

13.
We explored a "template-free" approach to arranging colloidal particles into a network pattern by a convective self-assembly technique. In this approach, which we call "two-step convective self-assembly," a stripe pattern of colloidal particles is first prepared on a substrate by immersing it in a suspension. The substrate with the stripes is then rotated by 90° and again immersed in the suspension to produce stripes perpendicular to the first ones, resulting in a grid-pattern network of colloidal arrays. The width of the colloidal grid lines can be controlled by changing the particle concentration while maintaining an almost constant spacing between the lines. On the basis of these results, we propose a mechanism for grid pattern formation. Our method is applicable to various types of particles. In addition, the wide applicability of this method was employed to create a hybrid grid pattern.  相似文献   

14.
Here, we present the preparation of thermally stable and solvent resistant micro-patterned polymeric films via static breath-figure process and sequent vulcanization, with a commercially available triblock polymer, polystyrene-b-polyisoprene-b-polystyrene (SIS). The vulcanized honeycomb structured SIS films became self-supported and resistant to a wide range of organic solvents and thermally stable up to 350°C for 2h, an increase of more than 300K as compared to the uncross-linked films. This superior robustness could be attributed to the high degree of polyisoprene cross-linking. The versatility of the methodology was demonstrated by applying to another commercially available triblock polymer, polystyrene-b-polybutadiene-b-polystyrene (SBS). Particularly, hydroxy groups were introduced into SBS by hydroboration. The functionalized two-dimensional micro-patterns feasible for site-directed grafting were created by the hydroxyl-containing polymers. In addition, the fixed microporous structures could be replicated to fabricate textured positive PDMS stamps. This simple technique offers new prospects in the field of micro-patterns, soft lithography and templates.  相似文献   

15.
A method for the fabrication of metallic nanoparticles in large quantities by electrochemical discharges is presented. In an aqueous electrolyte, large current density (∼1 A/mm2 at ∼20 V) leads to the formation of a ‘gas film’ around the electrode through which discharges occur. When metal ions are additionally present in the electrolyte and when the applied potential is cathodic, metal nanoparticles (typically 10–150 nm) are produced. The nanoparticles are formed in the solution and the gas film prevents them from depositing on the electrode. To control the size of the particles a method based on ‘rotating electrode’ is developed. Rotating the cathode rotates the fluid around it, which provides centrifugal force to the particles to move away from the electrode where they cannot grow. This method has been successfully used for fabrication of nanoparticles from several metal salts.  相似文献   

16.
Colloidal silver particles were successfully prepared by wet chemical synthesis. The pure single phase of silver was confirmed by X-ray diffraction. Transmission electron microscope categorized that the diameters of particles were 100 and 20 nm, depending on the molecular weight of the PVP stabilizer. A schematic drawing model was used to predict the packing efficiency of 1:1 wt% of two mixtures. The mixture of silver solution was deposited as a thin solid film by a desktop inkjet printer. Scanning electron microscope showed that two different sizes of silver particles give higher densely packed structure than the film of single particle size. When a 0–20 V voltage was applied, the current density reached was 0.10 J/cm2, suggesting that the silver film has potential to be applied as a cathode layer in organic light emitting diode (OLED) devices.  相似文献   

17.
We report quantitative measurement of heat generation in Au-nanoparticle colloidal solutions induced by radiofrequency (RF) electromagnetic waves (13.56 MHz; 25 W). The possible role of Au nanoparticles in RF heating was systematically investigated by separating the metal nanoparticles away from the colloidal solutions by centrifugation. Contrary to the previously made assumption in this field, it is found that Au nanoparticles do not contribute to RF energy absorption. The electrical conductivity measurement of the solutions with and without Au nanoparticles reveals that the Joule heating via ionic conduction in the electrolyte solutions is the dominant mechanism of RF-radiation-to-thermal conversion.  相似文献   

18.
Ordered 2D non-close-packed sphere arrays with controllable lattice structures have been fabricated by using soft lithography based on the solvent-swelling and mechanical deformation behaviors of PDMS film. The figure shows an SEM image of the ordered quasi-one-dimensional parallel wires of silica spheres on a polymer-coated substrate.  相似文献   

19.
20.
In this work, we report on the uniform deposition of tailored plasmonic coatings on polymer substrates and on the distance dependence of the plasmonic enhancement of a fluorescent dye. Silver, gold, and silver/gold alloy nanoparticles (NPs) with a range of diameters were synthesized using chemical techniques and characterized using UV-vis absorption spectroscopy, transmission electron microscopy (TEM), and atomic force microscopy (AFM). Reproducible polyelectrolyte (PEL) layers, which were deposited on plastic microwell plates using a layer-by-layer technique, served as both a stable and uniform substrate for deposition of the NPs as well as providing spacer layers of known thickness between the NPs and the fluorescent dye. A maximum enhancement factor of approximately 11 was measured for 60 nm diameter pure silver NPs, for a dye-NP separation of approximately 3 nm. A shift in the localized surface plasmon resonance (LSPR) wavelength as a function of the effective refractive index of the PEL layers was also observed, and the measured shifts show a similar trend with theoretical predictions. This work will contribute toward the rational design of optical biochip platforms based on plasmon-enhanced fluorescence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号