共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Self-assembled monolayers (SAMs) of n-butanethiol, n-dodecanethiol and their equimolar mixture on Au(111) were prepared and characterized by ellipsometry, contact angle measurement, scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). Results revealed that these SAMs are oriented ultrathin films with the thickness of nanometer scale, and the SAMs were influenced by the molecular chain length, the lattice orientation and cleanliness of the substrates. The surface of the longer chain SAM is hydrophobic. The thicknesses of three SAMs of n-butanethiol, n-dodecanethiol and their mixture revealed by ellipsometry and XPS are about 0.59 - 0.67nm, 1.60- 1.69 nm and 1.23 - 1.32nm, respectively. AFM images further demonstrated that the SAM formed by the mixture has some microdomains with two different thicknesses. 相似文献
3.
Choi Y Jeong Y Chung H Ito E Hara M Noh J 《Langmuir : the ACS journal of surfaces and colloids》2008,24(1):91-96
Self-assembled monolayers (SAMs) were formed by the spontaneous adsorption of octythiocyanate (OTC) on Au(111) using both solution and ambient-pressure vapor deposition methods at room temperature and 50 degrees C. The surface structures and adsorption characteristics of the OTC SAMs on Au(111) were characterized by scanning tunneling microscopy (STM) and X-ray photoelectron spectroscopy (XPS). The STM observation showed that OTC SAMs formed in solution at room temperature have unique surface structures including the formation of ordered and disordered domains, vacancy islands, and structural defects. Moreover, we revealed for the first time that the adsorption of OTC on Au(111) in solution at 50 degrees C led to the formation of SAMs containing small ordered domains, whereas the SAMs formed by vapor deposition at 50 degrees C had long-range ordered domains, which can be described as (radical3 x 2 radical19)R5 degrees structures. XPS measurements of the peaks in the S 2p and N 1s regions for the OTC SAMs showed that vapor deposition is the more effective method as compared to solution deposition for obtaining high-quality SAMs by adsorption of OTC on gold. The results obtained will be very useful in understanding the SAM formation of organic thiocyanates on gold surfaces. 相似文献
4.
We report a computational investigation of the conformation and the dynamics of self-assembled monolayers (SAMs) of a set of aromatic thiols arranged in the ( radical3 x radical3)-R30 degrees packing ratio on a Au(111) surface using molecular dynamics (MD) simulations. It was found that the molecular conformations were better defined for the arylthiol with two phenyl groups as compared to those with a single phenyl group and that the chemical structure of the head and tail groups had a considerable influence on the system geometry. In line with the density functional theory (DFT) calculations of small thiol molecules, we found for the SAMs that the face-centered cubic (fcc) site on the Au(111) surface was the most preferred, followed by the hexagonal close-packed (hcp) site, while the bridge position showed the characteristics of a local energy maximum. The dynamics of thiol head groups on these three Au sites was found to govern the overall dynamics of SAMs as measured by the mean square displacement. We also report that both the conformation and the dynamics on the studied time scale were driven by the SAM formation energy. 相似文献
5.
Ramírez EA Cortés E Rubert AA Carro P Benítez G Vela ME Salvarezza RC 《Langmuir : the ACS journal of surfaces and colloids》2012,28(17):6839-6847
The adsorption of 4-mercaptopyridine on Au(111) from aqueous or ethanolic solutions is studied by different surface characterization techniques and density functional theory calculations (DFT) including van der Waals interactions. X-ray photoelectron spectroscopy and electrochemical data indicate that self-assembly from 4-mercaptopyridine-containing aqueous 0.1 M NaOH solutions for short immersion times (few minutes) results in a 4-mercaptopyridine (PyS) self-assembled monolayer (SAM) with surface coverage 0.2. Scanning tunneling microscopy images show an island-covered Au surface. The increase in the immersion time from minutes to hours results in a complete SAM degradation yielding adsorbed sulfur and a heavily pitted Au surface. Adsorbed sulfur is also the main product when the self-assembly process is made in ethanolic solutions irrespective of the immersion time. We demonstrate for the first time that a surface reaction is involved in PyS SAM decomposition in ethanol, a surface process not favored in water. DFT calculations suggest that the surface reaction takes place via disulfide formation driven by the higher stability of the S-Au(111) system. Other reactions that contribute to sulfidization are also detected and discussed. 相似文献
6.
Cyganik P Buck M Wilton-Ely JD Wöll C 《The journal of physical chemistry. B》2005,109(21):10902-10908
Self-assembled monolayers of omega-(4'-methylbiphenyl-4-yl) alkane thiols CH3(C6H4)2(CH2)(n)SH (BPn, n = 2, 3, and 5) on Au(111) substrates, prepared at room and elevated temperatures, were studied using scanning tunneling microscopy. In contrast to the biphenyl thiol analogues with n = 0 or 1, ordered domains of large size are formed which exhibit small, periodic height variations on a length scale of several nanometers. These are attributed to solitons (or domain walls), resulting from structural mismatch between the molecular adlayer and the gold substrate. The implications of these results for the design of aromatic thiols to cope with stress and yield low-defect density self-assembled monolayers are discussed. 相似文献
7.
Zhou W Baunach T Ivanova V Kolb DM 《Langmuir : the ACS journal of surfaces and colloids》2004,20(11):4590-4595
4,4'-Dithiodipyridine (PySSPy) monolayers on Au(111) were investigated by cyclic voltammetry, X-ray photoelectron spectroscopy (XPS) and in situ scanning tunneling microscopy (STM). The studies were performed in solutions of different anions and pHs (0.1 M H2SO4, 0.1 M HClO4, 0.1 and 0.01 M Na2SO4, 0.1 and 0.01 M NaOH). The cyclic current-potential curves in H2SO4 show current peaks at about 0.4 V, which are absent for all other electrolytes at this potential. The XPS data suggest that PySSPy adsorbs via the S endgroup on the gold surface and the S-S bond breaks during adsorption. From the chemical shift of the N(ls) peak, it is concluded that in acidic media the self-assembled monolayer (SAM) is fully protonated, whereas in basic solution it is not. The pKa is estimated to be 5.3. STM studies reveal the existence of highly ordered superstructures for the SAM. In Na2SO4 and H2SO4, a (7 x mean square root of 3) structure is proposed. However, whereas in Na2SO4 solutions the superstructure does not change with potential, in 0.1 M H2SO4 the superstructure is observed only negative of the current peak at +0.4 V. At more positive potentials, the film becomes disordered. The results are compared to those for 4-mercaptopyridine (PyS) SAMs. XPS experiments and current-potential curves indicate that both molecules adsorb in the same manner on Au(111), that is, even in the case of PySSPy the adspecies is PyS. The STM results, however, call for a more subtle interpretation. While in Na2SO4 solutions the observed superstructures are the same for both SAMs, markedly different structures are found for PySSPy and PyS SAMs in 0.1 M H2SO4. 相似文献
8.
Although the adsorption of benzenethiols (BT) on Au(111) usually leads to the formation of disordered phases, we demonstrate here that the displacement of preadsorbed cyclohexanethiol self-assembled monolayers (SAMs) on Au(111) by BT molecules can be a successful approach to obtain two-dimensional BT SAMs with long-range ordered domains. 相似文献
9.
Lüssem B Müller-Meskamp L Karthäuser S Waser R Homberger M Simon U 《Langmuir : the ACS journal of surfaces and colloids》2006,22(7):3021-3027
A method is presented for depositing mixed self-assembled monolayers (SAMs) of dodecanethiol (C12) and 4'-methyl-1,1'-biphenyl-4-butane (H3C-C6H4-C6H4-(CH2)4-SH, BP4) by insertion of BP4 into a closely packed SAM of dodecanethiol on Au(111). Insertion takes place at defect sites such as domain boundaries or etch pits in the gold surface that are characteristic of C12 monolayers on gold. With a lower probability, insertion also occurs beside defect sites inside dodecanethiol domains. Insertion at defect sites results in domains of BP4, whereas insertion into C12 domains leads to isolated BP4 molecules. The isolated BP4 molecules are shown not to move at room temperature. By comparing the apparent height of the isolated BP4 molecules and BP4 domains, it is proposed that the isolated molecules have the same conformation as in the full-coverage phase. A simple two-layer model is proposed to characterize the current transport through BP4. The decay constant beta for the phenylene groups is deduced from the apparent STM heights of the inserted BP4 islands compared to the STM heights of the C12 closely packed monolayers. 相似文献
10.
Scanning tunneling microscopy (STM) and high-resolution electron energy loss spectroscopy (HREELS) were used to examine the structural transitions and interface dynamics of octanethiol (OT) self-assembled monolayers (SAMs) caused by long-term storage or annealing at an elevated temperature. We found that the structural transitions of OT SAMs from the c(4 x 2) superlattice to the (6 x square root 3) superlattice resulting from long-term storage were caused by both the dynamic movement of the adsorbed sulfur atoms on several adsorption sites of the Au(111) surface and the change of molecular orientation in the ordered layer. Moreover, it was found that the chemical structure of the sulfur headgroups does not change from monomer to dimer by the temporal change of SAMs at room temperature. Contrary to the results of the long-term-stored SAMs, it was found that the annealing process did not modify either the interfacial or chemical structures of the sulfur headgroups or the two-dimensional c(4 x 2) domain structure. Our results will be very useful for a better understanding of the interface dynamics and stability of sulfur atoms in alkanethiol SAMs on Au(111) surfaces. 相似文献
11.
Willey TM Vance AL van Buuren T Bostedt C Nelson AJ Terminello LJ Fadley CS 《Langmuir : the ACS journal of surfaces and colloids》2004,20(7):2746-2752
Carboxyl-terminated self-assembled monolayers (SAMs) are commonly used in a variety of applications, with the assumption that the molecules form well-ordered monolayers. In this work, near-edge X-ray absorption fine structure measurements verify that well-ordered monolayers can be formed using acetic acid in the solvent. Disordered monolayers with unbound molecules present in the film result using only ethanol. A stark reorientation occurs upon deprotonation of the end group by rinsing in a KOH solution. This reorientation of the end group is reversible with tilted-over, hydrogen-bound carboxyl groups while the carboxylate ion end groups are upright. C(1s) photoemission shows that SAMs formed and rinsed with acetic acid in ethanol have protonated end groups, while SAMs formed without acetic acid have a large fraction of carboxylate-terminated molecules. 相似文献
12.
Dong TY Chang LS Tseng IM Huang SJ 《Langmuir : the ACS journal of surfaces and colloids》2004,20(11):4471-4479
The spectroscopic and electrochemical characterizations of electrochemically stable biferrocene-modified Au clusters and chemisorbed biferrocenylalkanethiols on Au(111) surface were studied. The characterizations of biferrocene-modified Au cluster using TEM, UV-vis, and NMR techniques are also reported. Two successive reversible one-electron redox waves were observed for the biferrocenylalkanethiol Au nanoclusters and biferrocenylalkanethiol monolayers on Au(111) surface in the cyclic voltammetry. Furthermore, the positive and negative current peaks for each redox wave occur at almost the same potential, and the peak current increases almost linearly with the sweep rate. Repeat scanning does not change the voltammograms, demonstrating that these monolayers are stable to electrochemical cycling. The coverages of electroactive biferrocene in the monolayers were calculated from the cyclic voltammograms. The standard electron-transfer rate constant was calculated from the splitting between the oxidation and reduction peaks. 相似文献
13.
Ichimura AS Lew W Allara DL 《Langmuir : the ACS journal of surfaces and colloids》2008,24(6):2487-2493
Infrared reflection spectroscopy (IRS), single wavelength ellipsometry, and density functional theory were used to elucidate the structure of a molecular tripod self-assembled monolayer (SAM) on polycrystalline gold{111} substrates. The tripod SAM was formed by the reaction of SiCl4 with a densely packed monolayer of 2-mercaptoethanol, 6-mercaptohexanol, and 16-mercaptohexadecanol under inert atmosphere. After reaction with SiCl4, IRS spectra show an intense absorption at approximately 1112 cm(-1) that is attributed to Si-O-C asymmetric stretching vibration of a molecular tripod structure. Harmonic vibrational frequencies computed at the B3LYP/6-311+g** level of theory for the mercaptoethanol tripod SAM closely match the experimental IRS spectra, giving further support for the tripod structure. When rinsed with methanol or water, the Si-Cl-terminated SAM becomes capped with Si-OMe or Si-OH. The silanol-terminated tripod SAM is expected to find use in the preparation of thin zeolite and silica films on gold substrates. 相似文献
14.
We present an STM study of self-assembled monolayers of 2,3,6,7,10,11-undecalkoxy-substituted triphenylene (T11) at the n-tetradecane/Au(111) interface under ambient conditions. T11 molecules self-organize as paired rows with molecules lying flat on the surface in an antiparallel position. Three alkyl chains of each T11 molecule align along the 110 direction of the underlying Au(111) substrate. The association of T11 in molecular pairs appears to result from a substrate-induced mechanism governed by the strong anisotropic interaction between T11 alkyl chains and Au(111). 相似文献
15.
We probe the electronic structure of alkanethiolate self-assembled monolayers (SAMs) on Au(111) using two-photon photoemission spectroscopy. We observe a dispersive unoccupied resonance close to the vacuum level with a lifetime shorter than 30 fs. The short lifetime and the insensitivity of the energy level and dispersion to molecular length (and thus layer thickness) suggest that the probability density of the electron wave function is concentrated inside the molecular layer close to the SAM/Au interface. Such an interfacial resonance results from the image like potential at the SAM/Au interface. 相似文献
16.
A detailed study on the time-dependent organization of a decanethiol self-assembled monolayer (SAM) at a designed solution concentration onto a Au(111) surface has been performed with scanning tunneling microscopy (STM). The SAMs were prepared by immersing Au(111) into an ethanol solution containing 1 microM decanethiol with different immersion times. STM images revealed the formation process and adlayer structure of the SAMs. It was found that the molecules self-organized into adlayers from random separation to a well-defined structure. From 10 s, small domains with ordered molecular organization appeared, although random molecules could be observed on Au(111) at the very initial stage. At 30 s, the SAM consisted of uniform short stripes. Each stripe consisted of sets of decanethiol mainly containing eight molecules. With the immersion time increasing, the length of the stripes increased. At 5 min, the alkyl chains overlapped each other between the adjacent stripes, indicating the start of a stacked process. After immersing Au(111) in decanethiol solution for 3 days, a densely packed adlayer with a (radical 3 x radical 3)R30 degrees structure was observed. The formation process and structure of decanethiol SAMs are well related to sample preparation conditions. The wettability of the decanethiolate SAM-modified Au(111) surface was also investigated. 相似文献
17.
《Electrochemistry communications》1999,1(3-4):91-96
We report the self-assembly and electrochemical behaviour of the blue copper protein Pseudomonas aeruginosa azurin on Au(111) electrodes in aqueous acetate buffer (pH=4.6). The formation of monolayers of this protein is substantiated by electrochemical measurements. Capacitance results indicate qualitatively that the protein is strongly adsorbed at sub-μM concentrations in a broad potential range (about 700 mV). This is further supported by the attenuation of a characteristic cyclic voltammetric peak of Au(111) in acetate solution with increasing azurin concentration. Reductive desorption is clearly disclosed in NaOH solution (pH=13), strongly suggesting that azurin is adsorbed via its disulphide group. An anodic peak and a cathodic peak associated with the copper centre of azurin are finally observed in the differential pulse voltammograms. These peaks are, interestingly, indicative of long-range electrochemical electron transfer such as paralleled by intramolecular electron transfer between the disulphide anion radical and the copper atom in homogeneous solution, and anticipated by theoretical frames. Together with reported in situ scanning tunnelling microscopy (STM) results they constitute the first case for electrochemistry of self-assembled monolayers of azurin, even redox proteins. This integrated investigation provides a new approach to both structure and function of adsorbed redox metalloproteins at the molecular level. 相似文献
18.
This report concerns an in-situ scanning tunneling microscopy study of the initial stages in the formation of a Au-Cd alloy on the Au(111) herringbone reconstruction. Although Au-Cd nanoclusters of alloy have been observed in sulfate electrolyte by this group, alloy "nanowires" were observed to form preferentially in the hcp regions between the sets of "soliton" walls of the reconstruction only in the presence of chloride. The nanowires were formed at -0.55 V versus 3 M Ag/AgCl, corresponding to Cd underpotential deposition (upd). Upd is electrodeposition at a potential prior to that needed to deposit the bulk element. 相似文献
19.
20.
An iodine-modified Au(111) surface, (I/Au(111)), was used as a substrate to prepare a C 60 adlayer by self-organization in a benzene solution. A highly ordered C 60 adlayer was successfully prepared due to the moderate C 60-I/Au(111) interaction. Two lattice structures, (2 square root 3 x 2 square root 3) R30 degrees and p(2 x 2), were imaged for this C 60 adlayer. For the first structure, a featureless ball-like molecular shape was imaged, ascribed to the molecular rotation resulting from a symmetrical location between C 60 and iodine atoms. For the p(2 x 2) structure, the asymmetrical location of C 60 with respect to the iodine atoms freezes the C 60 molecules on the substrate, leading to a clear image of intramolecular structure. The intermediate iodine atoms in the C 60/I/Au(111) adlayer can be desorbed by electrochemically reduction without significantly affecting the ordering of the C 60 adlayer. However, the internal pattern of C 60 disappears in the absence of iodine. 相似文献