首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
In this paper, a robust control system combining backstepping and sliding mode control techniques is used to realize the synchronization of two gap junction coupled chaotic FitzHugh-Nagumo (FHN) neurons in the external electrical stimulation. A backstepping sliding mode approach is applied firstly to compensate the uncertainty which occur in the control system. However, the bound of uncertainty is necessary in the design of the backstepping sliding mode controller. To relax the requirement for the bound of uncertainty, an adaptive backstepping sliding mode controller with a simple adaptive law to adapt the uncertainty in real time is designed. The adaptive backstepping sliding mode control system is robust for time-varying external disturbances. The simulation results demonstrate the effectiveness of the control scheme.  相似文献   

2.
In this paper, the problem of chaos synchronization between two different uncertain chaotic systems with input nonlinearities is investigated. Both master and slave systems are perturbed by model uncertainties, external disturbances and unknown parameters. The bounds of the model uncertainties and external disturbances are assumed to be unknown in advance. First, a simple linear sliding surface is selected. Then, appropriate adaptive laws are derived to tackle the model uncertainties, external disturbances and unknown parameters. Subsequently, based on the adaptive laws and Lyapunov stability theory, a robust adaptive sliding mode control law is designed to guarantee the existence of the sliding motion. Two illustrative examples are presented to verify the usefulness and applicability of the proposed technique.  相似文献   

3.
For the sliding mode controller of uncertain chaotic systems subject to input nonlinearity, the upper bound of the norm of uncertainties is commonly used to determine the controller parameter. However, this will cause serious chattering. In order to overcome this drawback, two new sliding mode controllers are proposed to ensure robust synchronization for a classes of chaotic systems with input nonlinearities and external uncertainty. Compared with the existing results, the proposed controllers can effectively reduce the chattering nearby sliding mode and improve the dynamic performance of the systems. Simulation results are provided to verify the proposed methods.  相似文献   

4.
In this paper, a robust adaptive neural network synchronization controller is proposed for two chaotic systems with input time delay and uncertainty. The studied chaotic system may possess a wide class of nonlinear time-delayed input uncertainty. The radial basis function (RBF) neural network is used to approximate the unknown continuous bounded function item of the time delay uncertainty via appropriate weight value updated law. With the output of RBF neural network, a robust adaptive synchronization control scheme is presented for the time delay uncertain chaotic system. Finally, a simulation example is used to illustrate the effectiveness of the proposed synchronization control scheme.  相似文献   

5.
In this article, a fuzzy adaptive control scheme is designed to achieve a function vector synchronization behavior between two identical or different chaotic (or hyperchaotic) systems in the presence of unknown dynamic disturbances and input nonlinearities (dead‐zone and sector nonlinearities). This proposed synchronization scheme can be considered as a generalization of many existing projective synchronization schemes (namely the function projective synchronization, the modified projective synchronization, generalized projective synchronization, and so forth) in the sense that the master and slave outputs are assumed to be some general function vectors. To practically deal with the input nonlinearities, the adaptive fuzzy control system is designed in a variable‐structure framework. The fuzzy systems are used to appropriately approximate the uncertain nonlinear functions. A Lyapunov approach is used to prove the boundedness of all signals of the closed‐loop control system as well as the exponential convergence of the corresponding synchronization errors to an adjustable region. The synchronization between two identical systems (chaotic satellite systems) and two different systems (chaotic Chen and Lü systems) are taken as two illustrative examples to show the effectiveness of the proposed method. © 2015 Wiley Periodicals, Inc. Complexity 21: 234–249, 2016  相似文献   

6.
研究了具有未知参数和外界扰动的多个混沌系统之间的双路组合函数投影同步问题.首先给出了由四个混沌驱动系统和两个混沌响应系统组成的双路组合函数投影同步系统的定义,然后以Lyapunov稳定性理论和不等式变换方法为分析依据,设计了鲁棒自适应控制器和参数自适应律,使得两路同步系统中的响应系统和驱动系统按照相应的函数比例因子矩阵实现同步,并有效克服未知有界干扰和未知参数的影响.相应的理论分析和数值仿真证明了该同步方案的可行性和有效性.  相似文献   

7.
In this paper, a robust adaptive sliding mode controller (RASMC) is introduced to synchronize two different chaotic systems in the presence of unknown bounded uncertainties and external disturbances. The structure of the master and slave chaotic systems has no restrictive assumption. Appropriate adaptation laws are derived to tackle the uncertainties and external disturbances. Based on the adaptation laws and Lyapunov stability theory, an adaptive sliding control law is designed to ensure the occurrence of the sliding motion even when both master and slave systems are perturbed with unknown uncertainties and external disturbances. Since the conventional sliding mode controllers contain the sign function, the undesirable chattering is occurred. We propose a new simple adaptive scheme to eliminate the chattering. Finally, numerical simulations are presented to verify the usefulness and applicability of the proposed control strategy.  相似文献   

8.
In this paper, an adaptive sliding mode controller for a novel class of fractional-order chaotic systems with uncertainty and external disturbance is proposed to realize chaos control. The bounds of the uncertainty and external disturbance are assumed to be unknown. Appropriate adaptive laws are designed to tackle the uncertainty and external disturbance. In the adaptive sliding mode control (ASMC) strategy, fractional-order derivative is introduced to obtain a novel sliding surface. The adaptive sliding mode controller is shown to guarantee asymptotical stability of the considered fractional-order chaotic systems in the presence of uncertainty and external disturbance. Some numerical simulations demonstrate the effectiveness of the proposed ASMC scheme.  相似文献   

9.
研究了分数阶双指数混沌系统的自适应滑模同步问题.通过设计滑模函数和控制器,构造了平方Lyapunov函数进行稳定性分析.利用Barbalat引理证明了同步误差渐近趋于零,获得了系统取得自适应滑模同步的充分条件.数值仿真结果表明:选取适当的控制器及与滑模函数,分数阶双指数混沌系统取得自适应滑模同步.  相似文献   

10.
The horizontal platform system (HPS) is a mechanical device that exhibits rich and chaotic dynamics. In this paper, the problem of finite-time synchronization of two non-autonomous chaotic HPSs is investigated. It is assumed that both drive and response systems are disturbed by model uncertainties, external disturbances and fully unknown parameters. Appropriate update laws are proposed to undertake the unknown parameters. Using the update laws and finite-time control theory, a robust adaptive controller is derived to synchronize the two uncertain HPSs in a given finite time. Subsequently, the effects of input nonlinearities are taken into account and a robust adaptive controller is introduced to synchronize the two uncertain HPSs within a finite time. The finite-time stability and convergence of the proposed schemes are analytically proved. Two illustrative examples are presented to show the robustness and applicability of the proposed adaptive finite-time control techniques.  相似文献   

11.
The paper is concerned with the problem of robust stabilization for uncertain large-scale time-varying delayed systems with input nonlinearities. Based on the sliding mode control, a memoryless decentralized adaptive sliding mode controller (DASMC) is developed. The proposed controller ensures the occurrence of the sliding manifold of the composite system even subjected to input nonlinearity. It shows that the uncertain nonlinear large-scale system also possesses the property of insensitivity to uncertainties and disturbances as a linear system does. A numerical example is given to verify the validity of the developed memoryless DASMC.  相似文献   

12.
针对一类坦克炮控伺服系统,充分考虑系统中的未知齿隙非线性及摩擦非线性,将这些未知非线性的影响表示成有界扰动项与未知非线性动态项之和,借助ARC(自适应鲁棒控制)的思想设计控制器,当未知非线性动态项为零时,控制器即为自适应控制器,保持系统稳定的同时实现对参考信号的精确跟踪,而当系统存在未知非线性动态项时,控制器具有很好的鲁棒性,保持系统所有信号有界的同时实现对参考信号的误差跟踪,且跟踪误差可以由设计参数的取值设定来任意调节,与现有结果相比,控制器的设计建立在充分考虑系统未知非线性的影响之上,从而避免了简单的把未知非线性影响简单的考虑成系统"总扰动"所造成的被控系统性能的损失。  相似文献   

13.
This paper addresses the problem of projective synchronization of chaotic systems and switched chaotic systems by adaptive control methods. First, a necessary and sufficient condition is proposed to show how many state variables can realize projective synchronization under a linear feedback controller for the chaotic systems. Then, accordingly, a new algorithm is given to select all state variables that can realize projective synchronization. Furthermore, according to the results of the projective synchronization of chaotic systems, the problem of projective synchronization of the switched chaotic systems comprised by the unified chaotic systems is investigated, and an adaptive global linear feedback controller with only one input channel is designed, which can realize the projective synchronization under the arbitrary switching law. It is worth mentioning that the proposed method can also realize complete synchronization of the switched chaotic systems. Finally, the numerical simulation results verify the correctness and effectiveness of the proposed method.  相似文献   

14.
A sliding mode synchronization controller is presented with RBF neural network for two chaotic systems in this paper. The compound disturbance of the synchronization error system consists of nonlinear uncertainties and exterior disturbances of chaotic systems. Based on RBF neural networks, a compound disturbance observer is proposed and the update law of parameters is given to monitor the compound disturbance. The synchronization controller is given based on the output of the compound disturbance observer. The designed controller can make the synchronization error convergent to zero and overcome the disruption of the uncertainty and the exterior disturbance of the system. Finally, an example is given to demonstrate the availability of the proposed synchronization control method.  相似文献   

15.
研究了一类混沌系统的函数投影同步问题.基于Lyapunov稳定性理论和主动滑模控制方法,设计了主动滑模控制器,实现混沌系统的函数投影同步.数值仿真验证了该控制器的有效性和正确性.  相似文献   

16.
In this article, an adaptive sliding mode technique based on a fractional‐order (FO) switching type control law is designed to guarantee robust stability for a class of uncertain three‐dimensional FO nonlinear systems with external disturbance. A novel FO switching type control law is proposed to ensure the existence of the sliding motion in finite time. Appropriate adaptive laws are shown to tackle the uncertainty and external disturbance. The calculation formula of the reaching time is analyzed and computed. The reachability analysis is visualized to show how to obtain a shorter reaching time. A stability criteria of the FO sliding mode dynamics is derived based on indirect approach to Lyapunov stability. Effectiveness of the proposed control scheme is illustrated through numerical simulations. © 2015 Wiley Periodicals, Inc. Complexity 21: 363–373, 2016  相似文献   

17.
A robust adaptive sliding control scheme is developed in this study to achieve synchronization for two identical chaotic systems in the presence of uncertain system parameters, external disturbances and nonlinear control inputs. An adaptation algorithm is given based on the Lyapunov stability theory. Using this adaptation technique to estimate the upper-bounds of parameter variation and external disturbance uncertainties, an adaptive sliding mode controller is then constructed without requiring the bounds of parameter and disturbance uncertainties to be known in advance. It is proven that the proposed adaptive sliding mode controller can maintain the existence of sliding mode in finite time in uncertain chaotic systems. Finally, numerical simulations are presented to show the effectiveness of the proposed control scheme.  相似文献   

18.
A sliding mode control technique is introduced for exponential synchronization of chaotic systems. These systems are described by a general form including matched and unmatched nonlinear functions. A new hitting-free switching surface of proportional-integral type is proposed. This type of switching surface is without the hitting process if the attraction of sliding manifold is ensured. This property makes it easy to exponentially synchronize the master-slave chaotic systems. Based on this switching surface, a robust sliding mode controller (SMC) is derived to guarantee the attraction of sliding manifold even when the system is subjected to input uncertainties. An example is included to illustrate the results developed in this paper.  相似文献   

19.
In this paper, an adaptive neural network (NN) sliding mode controller (SMC) is proposed to realize the chaos synchronization of two gap junction coupled FitzHugh–Nagumo (FHN) neurons under external electrical stimulation. The controller consists of a radial basis function (RBF) NN and an SMC. After the RBFNN approximating the uncertain nonlinear part of the error dynamical system, the SMC realizes the desired control property regardless of the existence of the approximation errors and external disturbances. The weights of the NN are tuned online based on the sliding mode reaching law. According to the Lyapunov stability theory, the stability of the closed error system is guaranteed. The control scheme is robust to the uncertainties such as approximate error, ionic channel noise and external disturbances. Chaos synchronization is obtained by the proper choice of the control parameters. The simulation results demonstrate the effectiveness of the proposed control method.  相似文献   

20.
This paper is concerned with the stabilization problem for a class of chaotic systems with mismatched perturbations and input nonlinearities. A novel sliding surface is specially designed so that when the system enters the sliding mode, the mismatched perturbations can be effectively overcome and achieve asymptotic stability. Then, an adaptive sliding mode controller (ASMC) is proposed to drive the controlled state trajectories into the designated sliding surface in finite time even subjected to input nonlinearities. Finally, the corresponding numerical simulations are demonstrated to verify the effectiveness of proposed method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号