首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel ditopic ligand DTPA-ph-phen, based on 1,10-phenanthroline and diethylenetriaminepentaacetic acid (DTPA) units, has been designed and fully characterized by (1)H, (13)C, and 2D-COSY NMR spectroscopy, IR and electrospray ionization mass spectrometry (ESI-MS) techniques. The DTPA core of the ligand specifically binds Ln(III) ions (Ln = Eu, Gd) resulting in formation of the [Ln{DTPA-ph-phen}(H(2)O)](-) complex. The photophysical properties of the Eu(III) compound have been investigated, and the complex shows characteristic red luminescence with an overall quantum yield of 2.2%. Reaction of [Gd{DTPA-ph-phen}(H(2)O)](-) with Ru(II) leads to further self-assembly into a heterobimetallic metallostar complex containing Gd(III) and Ru(II) in a 3:1 ratio. This tetranuclear [(Gd{DTPA-ph-phen})(3)(H(2)O)(3)Ru](-) complex (Gd(3)Ru), formed by the coordination of Ru(II) to the 1,10-phenanthroline unit, has been characterized by a range of experimental techniques and evaluated toward its feasibility as a potential bimodal optical/MRI agent. The Gd(3)Ru metallostar shows intense metal-to-ligand charge transfer (MLCT) transition resulting in intense light absorption in the visible spectral region. Upon irradiation into this MLCT band at 450 nm, the Gd(3)Ru complex exhibits red broad-band luminescence in the range of 550-800 nm centered at 610 nm with a quantum yield of 4.8%. Proton nuclear magnetic relaxation dispersion (NMRD) measurements indicate that the Gd(3)Ru complex exhibits an enhanced relaxivity value r(1) of 36.0 s(-1) mM(-1) per metallostar molecule at 20 MHz and 310 K. The ability of the complex to noncovalently bind to human serum albumin (HSA) was investigated, but no significant interaction was detected.  相似文献   

2.
A new bis-β-diketone, 3,3'-bis(4,4,4-trifluoro-1,3-dioxobutyl)biphenyl (BTB), has been designed and prepared for the synthesis of a series of dinuclear lanthanide complexes [Ln(2)(BTB)(3)(C(2)H(5)OH)(2)(H(2)O)(2)] [Ln = Eu (1), Gd (2)], [Ln(2)(BTB)(3)(DME)(2)] [Ln = Nd (3), Yb (4); DME = ethylene glycol dimethyl ether] and [Eu(2)(BTB)(3)(L)(2)] [L = 2,2-bipydine (5); 1,10-phenanthroline (6); 4,7-diphenyl-1,10-phenanthroline (7)]. Complexes 1-7 have been characterized by various spectroscopic techniques and their photophysical properties are investigated. X-ray crystallographical analysis reveals that complexes 1, 3 and 4 adopt triple-stranded dinuclear structures which are formed by three bis-bidentate ligands with two lanthanide ions. The complexes 1 and 3-7 display strong visible red or NIR luminescence upon irradiation at ligand band around 372 nm, depending on the choice of the lanthanide. The solid-state photoluminescence quantum yields and the lifetimes of Eu(3+) complexes are determined and described.  相似文献   

3.
刘兴旺  王娜  索全伶 《有机化学》2009,29(2):292-296
为了寻找新的发光材料并研究β-二酮对稀土配合物发光性能的影响, 我们合成了一个新的β-二酮配体: 1-苯 基-3-(对苯乙炔苯基)-1,3-丙二酮(HPPP), 并用HPPP、邻菲罗啉(phen)分别与Eu(III)和Tb(III)反应, 合成了两个新的三元稀土配合物: Eu(PPP)3phen和Tb(PPP)3phen, 通过红外光谱、化学分析、元素分析对三元稀土配合物的组成和结构进行了表征. 研究了配合物的荧光性质, 发现β-二酮配体对配合物的发光有较大影响, 通过量子化学计算对实验结果进行了解释.  相似文献   

4.
Two novel pyrazole-derived ligands, 3-chloro-6-(3,5-dimethyl-1H-pyrazol-1-yl)picolinic acid (CDPA) and 3-chloro-6-(3,5-dimethyl-1H-pyrazol-1-yl)-N-phenylpicolinamide (CDPP) were prepared by 3,6-dichloropicolinic acid (DCPA). Their complexes with terbium(III) and europium(III) were synthesized. The complexes were characterized by elemental analysis, infrared spectra, 1H NMR and TG–DTG. Furthermore, the above complexes using 1,10-phenanthroline as a secondary ligand were also synthesized and characterized. The luminescence properties of these complexes in solid state were investigated. The results suggested that Tb(III) complexes exhibit more efficient luminescence than Eu(III) complexes and the fluorescence of the complexes with 1,10-phenanthroline as a secondary ligand was prominently stronger than that of complexes without this ligand., and the three ligand (DCPA), (CDPP) and (CDPA) are excellent sensitizers to Eu(III) and Tb(III) ion.  相似文献   

5.
Li Y  Zheng FK  Liu X  Zou WQ  Guo GC  Lu CZ  Huang JS 《Inorganic chemistry》2006,45(16):6308-6316
A series of homodinuclear lanthanide(III) complexes with the 4-cba ligand, [La2(4-cba)6(phen)2(H2O)6] (1) and [Ln2(4-cba)6(phen)2(H2O)2] (Ln = Pr (2), Nd (3), Sm (4), Eu (5), Gd (6), and Dy (7); 4-Hcba = 4-cyanobenzoic acid; phen = 1,10-phenanthroline), have been synthesized and structurally characterized by single-crystal X-ray diffraction. In 1, two water molecules bridge two nine-coordinated La ions, and six 4-cba ligands coordinate to the two La ions in terminal mode. In the isostructural complexes 2-7, two eight-coordinated Ln ions are connected by four bidentate 4-cba ligands, and another two 4-cba ligands terminate the two Ln ions. The variable-temperature magnetic properties of 2-7 have been investigated. Complex 7 shows a significant ferromagnetic interaction between Dy(III), while no magnetic interaction exists between Gd(III) ions in 6. In 2-5, the value of chi(M)T decreases with decreasing temperature, but the magnetic interactions between the Ln(III) ions cannot definitely be concluded. Notably, the spin-orbit coupling parameters, lambda, for Sm(III) (216(2) cm(-1)) and Eu(III) (404(2) cm(-1)) have been obtained in 4 and 5, respectively. The strong fluorescent emissions of 4, 5, and 7 demonstrate that ligand-to-Ln(III) energy transfer is efficient and that the coordinated water molecules do not quench their luminescence by the nonradiative dissipation of energy.  相似文献   

6.
Novel europium (III) complexes of the formulae Eu(OHAP)(3).2H2O, Eu(OHAP)(3)Phen, Eu2(DAR)(3).4H2O and Eu2(DAR)(3)Phen2 (HOHAP=2'-hydroxyacetophenone, H2DAR=4,6-diacetylresorcinol, Phen=1,10-phenanthroline) have been designed and synthesized in this paper. These complexes were characterized by elemental analysis, FT-IR, and UV-vis. Based on these observations, the ligands are coordinated to Eu(III) via the acetyl and phenolic oxygens, and H2DAR is concluded to be bis-bidentate donor. Photoluminescence studies showed that the several complexes emitted red luminescence. Thermo-gravimetric analysis showed that the complexes possess good thermal stability. Also, it was found that Phen as a synergic ligand, coordinated to Eu(III) in a composite system like 2'-hydroxyacetophenone and 4,6-diacetylresorcinol, could enhance the complexes luminescence intensity, quantum yield and lifetime.  相似文献   

7.
A new pyridine-containing ligand, N,N'-bis(6-carboxy-2-pyridylmethyl)ethylenediamine-N,N'-diacetic acid (H(4)L), has been designed for the complexation of lanthanide ions. (1)H and (13)C NMR studies in D(2)O solutions show octadentate binding of the ligand to the Ln(III) ions through the nitrogen atoms of two amine groups, the oxygen atoms of four carboxylates, and the two nitrogen atoms of the pyridine rings. Luminescence measurements demonstrate that both Eu(III) and Tb(III) complexes are nine-coordinate, whereby a water molecule completes the Ln(III) coordination sphere. Ligand L can sensitize both the Eu(III) and Tb(III) luminescence; however, the quantum yields of the Eu(III)- and Tb(III)-centered luminescence remain modest. This is explained in terms of energy differences between the singlet and triplet states on the one hand, and between the 0-phonon transition of the triplet state and the excited metal ion states on the other. The anionic [Ln(L)(H2O)]- complexes (Ln=La, Pr, and Gd) were also characterized by theoretical calculations both in vacuo and in aqueous solution (PCM model) at the HF level by means of the 3-21G* basis set for the ligand atoms and a 46+4 f(n) effective core potential for the lanthanides. The structures obtained from these theoretical calculations are in very good agreement with the experimental solution structures, as demonstrated by paramagnetic NMR measurements (lanthanide-induced shifts and relaxation-rate enhancements). Data sets obtained from variable-temperature (17)O NMR at 7.05 T and variable-temperature (1)H nuclear magnetic relaxation dispersion (NMRD) on the Gd(III) complex were fitted simultaneously to give insight into the parameters that govern the water (1)H relaxivity. The water exchange rate (k(298)(ex)=5.0 x 10(6) s(-1)) is slightly faster than in [Gd(dota)(H2O)]- (DOTA=1,4,7,10-tetrakis(carboxymethyl)-1,4,7,10-tetraazacyclododecane). Fast rotation limits the relaxivity under the usual MRI conditions.  相似文献   

8.
Complex formation in a Ln(III)-1,10-phenanthroline-ethyl acetate system, where Ln = La, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Yb, or Lu, is studied by spectrophotometric methods. The stability of the complexes is estimated. The changes in the thermodynamic parameters of complex formation and the bonding character in the lanthanide complexes with 1,10-phenanthroline and 2,2′-dipyridyl are ascertained and compared.  相似文献   

9.
The ferrocene-derivatives bis(ferrocenyl-ethynyl)-1,10-phenanthroline (Fc(2)phen) and ferrocenoyltrifluoroacetone (Hfta) have been used to synthesize ferrocene-containing rare-earth beta-diketonate complexes. The complexes [Ln(tta)(3)(Fc(2)phen)] and [Ln(fta)(3)(phen)] (where Ln = La, Nd, Eu, Yb) show structural similarities to the tris(2-thenoyltrifluoroacetonate)(1,10-phenanthroline)lanthanide(III) complexes, [Ln(tta)(3)(phen)]. The coordination number of the lanthanide ion is 8, and the coordination sphere can be described as a distorted dodecahedron. However, the presence of the ferrocene moieties shifts the ligand absorption bands of the rare-earth complexes to longer wavelengths so that the complexes can be excited not only by ultraviolet radiation but also by visible light of wavelengths up to 420 nm. Red photoluminescence is observed for the europium(III) complexes and near-infrared photoluminescence for the neodymium(III) and ytterbium(III) complexes. The presence of the ferrocene groups makes the rare-earth complexes hydrophobic and well-soluble in apolar organic solvents.  相似文献   

10.
The self-assembly of a carbonylpyridine-based heptadentate ligand with Ln(III) results in the formation of triangular trinuclear europium complexes, which exhibit interesting luminescent properties in the solid state and in solution. With a view to developing multimodal responsive systems, we report here the preparation and characterisation of analogous complexes with Gd(III). The X-ray crystal structure of Gd(3)L2(3) indeed reveals the isostructurality with the Eu(III) complexes. A combination of (1)H NMRD and variable temperature studies yields the parameters elucidating the exchange of coordinated water and relaxivity properties. Conveniently, the competitive spectrophotometric titrations with EDTA and NTA are used to determine the thermodynamic stability constants of the europium complexes in aqueous media. In addition, the exchange reaction with EDTA is monitored with NMR and fluorimetry. The interactions of the Eu(III) trinuclear complex with some potentially interfering ligands are qualitatively investigated by means of luminescence titrations.  相似文献   

11.
Slow evaporation of aqueous solutions containing mixtures of Na 2[Os(phen)(CN) 4], Ln(III) salts (Ln = Pr, Nd, Gd, Er, Yb), and (in some cases) an additional ligand such as 1,10-phenanthroline (phen) or 2,2'-bipyrimidine (bpym) afforded crystalline coordination networks in which the [Os(phen)(CN) 4] (2-) anions are coordinated to Ln(III) cations via Os-CN-Ln cyanide bridges. The additional diimine ligands, if present, also coordinate to the Ln(III) centers. Several types of structure have been identified by X-ray crystallographic studies. Photophysical studies showed that the characteristic emission of the [Os(phen)(CN) 4] (2-) chromophore, which occurs at approximately 680 nm in this type of coordination environment with a triplet metal-to-ligand charge transfer ( (3)MLCT) energy content of approximately 16 000 cm (-1), is quenched by energy transfer to those Ln(III) centers (Pr, Nd, Er, Yb) that have low-lying f-f states capable of accepting energy from the Os(II)-based (3)MLCT state. Time-resolved studies on the residual (partially quenched) Os(II)-based luminescence allowed the rates of Os(II) --> Ln(III) energy transfer to be evaluated. The measured rates varied substantially, having values of >5 x 10 (8), approximately 1 x 10 (8), and 2.5 x 10 (7) s (-1) for Ln = Nd, Er or Yb, and Pr, respectively. These differing rates of Os(II) --> Ln(III) energy transfer can be rationalized on the basis of the availability of f-f states of the different Ln(III) centers that are capable of acting as energy acceptors. In general, the rates of Os(II) --> Ln(III) energy transfer are an order of magnitude faster than the rates of Ru(II) --> Ln(III) energy transfer in a previously described series of [Ru(bipy)(CN) 4] (2-)/Ln(III) networks. This is ascribed principally to the lower energy of the Os(II)-based (3)MLCT state, which provides better spectroscopic overlap with the low-lying f-f states of the Ln(III) ions.  相似文献   

12.
A polymerizable ligand, 5-acrylamido-1,10-phenanthroline (L), was synthesized. Its Eu(III) complex with 2-thenoyltrifluoroacetone (HTTA) was prepared and characterized by elemental analysis, IR, MS, and 1H NMR spectra. The photophysical properties of the complex were studied in detail by using UV, luminescence spectra, luminescence lifetime and quantum yield. The complex shows a remarkable luminescence quantum yield at room temperature (40.1%) upon ligand excitation and a long 5D0 lifetime (590 μs), which makes it not only a promising light-conversion molecular device but also an excellent luminescent polymer precursor.  相似文献   

13.
Solid complexes Ln(Sal)3.H2O (Sal: salicylic acid; Ln: La3+, Nd3+, Eu3+, Tb3+) are synthesized, and their photoacoustic (PA) spectra in the UV-Vis region have been recorded. PA intensities of central lanthanide ions are interpreted in terms of the probability of nonradiative transitions. It is found that PA intensity of the ligand increases in the order of Tb(Sal)3.H2O < La(Sal3).H2O < Eu(Sal)3.H2O < Nd(Sal)3.H2O. Different PA intensities of the ligand are interpreted by comparison with the fluorescence spectra. Ternary complexes Eu(Sal)3Phen and Tb(Sal)3Phen (Phen: 1,10-phenanthroline) are synthesized. Compared with their binary complexes, PA intensity of the ligand Sal decreases for Eu(Sal)3Phen, while the reverse is true for that of Tb(Sal)3Phen. The luminescence of Eu3+ increases remarkably when Phen is introduced, and luminescence of Tb3+ decreases greatly when Phen is added. The intramolecular energy transfer and relaxation processes in the complexes are discussed from two aspects: radiative and nonradiative relaxations.  相似文献   

14.
A series of binary and ternary rare earth (Gd, Eu, Tb) complexes with ortho hydroxyl benzoic acid, para aminobenzoic acid, nicotinic acid and 1,10-phenanthroline were synthesized. Phosphorescence spectra and lifetimes of Gd complexes were measured and the lowest triplet state energies of gadolinium binary complexes and the intramolecular energy transfer efficiencies were determined. The luminescence properties and energy transfer process of Eu3+and Tb3+ complexes were discussed.  相似文献   

15.
We prepared Ln(III) (Ln=Eu, Gd, and Yb) complexes with a tripodal Schiff base, tris[2-(5-methylsalicylideneimino)ethyl]amine (H3L) and studied their photophysical properties. Upon ligand excitation, YbL showed Yb(III)-centered luminescence in the near-infrared region. While the overall quantum yield (0.60(1)%) of YbL in acetonitrile was moderate among the reported values for Yb(III) complexes, its radiative lifetime (0.33(2) ms) was significantly shorter than those reported previously. We propose that the ligand-to-metal charge-transfer (LMCT) state mediated the sensitization in YbL. The emission and excitation spectra of EuL indicated the participation of the LMCT state in the sensitization. The radiative lifetime (0.84(7) ms) for EuL in the solid state was rather short compared to those of reported Eu(III) complexes. Our results show that the Yb(III) complex with the Schiff base ligand has two features: the short radiative lifetime and the non-triplet sensitization path.  相似文献   

16.
(Z)-4-(4-Methoxyphenoxy)-4-oxobut-2-enoic acid and its solid rare earth complexes LnL3.2H2O (Ln=La, Eu, Tb) were synthesized and characterized by means of MS, elemental analysis, FTIR, 13C NMR and TG-DTA. The IR and 13C NMR results show that the carboxylic groups in the complexes coordinated to the rare earth ions in the form of a bidentate ligand, but the ester carboxylic groups have not taken part in the coordination. The luminescence spectra of Eu(III) and Tb(III) complexes in solid state were also studied. The strong luminescence emitting peaks at 616nm for Eu(III) and 547nm for Tb(III) can be observed, which could be attributed to the ligand has an enhanced effect to the luminescence intensity of the Eu and Tb.  相似文献   

17.
The enantiomers of N,N'-bis(1-phenylethyl)-2,6-pyridinedicarboxamide (L), namely, (R,R)-1, and (S,S)-1, react with Ln(III) ions to give stable [LnL(3)](3+) complexes in an anhydrous acetonitrile solution and in the solid state, as evidenced by electrospray ionization mass spectrometry, NMR, luminescence titrations, and their X-ray crystal structures, respectively. All [LnL(3)](3+) complexes [Ln(III) = Eu, Gd, Tb, and Yb; L = (R,R)-1 and (S,S)-1] are isostructural and crystallize in the cubic space group I23. Although the small quantum yields of the Ln(III)-centered luminescence clearly point to the poor efficiency of the luminescence sensitization by the ligand and the intersystem crossing and ligand-to-metal energy transfers, the ligand triplet-excited-state energy seems relatively well suited to sensitize many Ln(III) ion's emission for instance, in the visible (Eu and Tb), near-IR (Nd and Yb), or both regions (Pr, Sm, Dy, Er, and Tm).  相似文献   

18.
A new aryl amide type bifunctional bridging ligand 4,4'-bis{[(2'-benzylaminoformyl)phenoxyl]methyl}-1,1'-biphenyl (L) and its complexes with lanthanide ions (Ln=Pr, Eu, Gd, Tb, Ho, Er) were synthesized and characterized by elemental analysis, infrared spectra, conductivity measurements and thermal analysis. At the same time, the luminescence properties of the Eu and Tb complexes in acetone solutions were investigated. Under the excitation of UV light, these two complexes exhibited characteristic emission of europium and terbium ions. And the lowest triplet state energy level T1 of this ligand matches better to the lowest resonance energy level of Tb(III) than to Eu(III) ion.  相似文献   

19.
刘兴旺  王娜  高赛生态  高俊芳 《有机化学》2009,29(10):1676-1681
合成了一个新的β-二酮配体1-(2-噻吩基)-3-(对苯乙炔基苯基)-1,3-丙二酮(HTPP), 并用HTPP、邻菲罗啉(phen) 分别与Eu(III)和Tb(III)反应, 生成了两个新的三元稀土配合物Eu(TPP)3phen和Tb(TPP)3phen, 用红外光谱、化学分析、元素分析及热重分析对它们的组成和结构进行了表征. 室温下, 在紫外光激发下Eu(III)和Tb(III)的配合物表现出中心离子的特征荧光发射, 发现β-二酮配体对配合物的荧光有较大影响, 通过量子化学计算从理论上对实验结果进行了解释.  相似文献   

20.
A two-component ligand system (1) containing 1,4,7,10-tetraazacyclododecane-1,4,7-triacetic acid (DO3A) as the hosting unit for the lanthanide cations and an appended asymmetrically functionalized 1,10-phenanthroline (phen) as the chromophore was synthesized. The 1:1 complexes with Eu(3+), Gd(3+), Tb(3+), and Yb(3+) have been prepared and studied in aqueous solution. For Gd.1, a relaxivity value of 2.4 mM(-1) s(-1) has been measured at 20 MHz and 25 degrees C, which indicates that there are no water molecules in the first coordination sphere of the metal ion. The analysis of high resolution (1)H NMR spectra of Yb.1 supports this view and suggests the direct involvement of the phen moiety in the coordination of the metal ion. For Eu.1 and Tb.1, the absorption and luminescence spectra, the overall luminescence efficiencies, and the metal-centered (MC) lifetimes were obtained; coordination features were also determined by comparing luminescence properties in water and deuterated water. For Eu.1 and Tb.1, the overall emission sensitization (se) process in air-equilibrated water was found to be notably effective with phi(se) = 0.21 and 0.11, respectively. A detailed study of the steps originating from light absorption at the phen unit and leading to MC sensitized emission was performed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号