首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Two different internal standard dried blood spot (DBS) pre-impregnation procedures (prior to blood spotting) were investigated. In the first procedure DBS pre-impregnation is performed by immersing the DBS card fully into an internal standard solution. In the second procedure pre-impregnation is performed by pipetting a certain volume of an internal standard solution onto the DBS card. Morphine-d3 was used as the model compound for all experiments. The pre-impregnation procedure by immersing was further investigated with respect to homogeneity of impregnation, influence of different blood spotting techniques and the influence of spotting different blood volumes on the internal standard distribution, calibration and stability of pre-impregnated cards. Finally, the immersing procedure was used for the analysis of morphine in dried blood spots and the results were compared to the conventional procedure in which the internal standard morphine-d3 was added to the extraction solvent. The new pre-impregnated cards couple simplicity of operation and convenient use in the field to results equivalent to the conventional procedure.  相似文献   

2.
The collection of human blood samples as dried blood spots (DBS) for the pharmacokinetic assessment of investigational drugs in clinical trials offers a number of advantages over conventional plasma sampling, namely, small sample volume, simplified sample handling, and cost-effective shipping and storage. The use of DBS coupled with liquid chromatography–tandem mass spectrometry analysis was evaluated for the quantification of MK-1775, a Wee-1 inhibitor under development as a chemo/radio-sensitizer for the treatment of cancer. The DBS method exhibited an assay performance comparable to that of the existing plasma assay, which is currently used in support of clinical studies. Both assays used the same linear dynamic range of 2–1,000?ng/mL, with a lower limit of quantification of 2?ng/mL. Based on the intra-day assay validation results, the accuracy of the DBS method ranged from 94.0 to 105.0?%, with a coefficient of variation of <4.8?%. The blood-to-plasma ratio calculated from the DBS data (blood concentrations) and the plasma data (plasma concentrations) was in good agreement with the one obtained from the in vitro assessment using conventional methodology. No significant hematocrit impact on the assay was observed as hematocrit ranged from 16 to 85?%. The correlation between the measured MK-1775 concentrations in plasma and that determined in dried blood spots from oncology patients during the ongoing clinical study was discussed.  相似文献   

3.
Dried blood spot (DBS) sampling has gained considerable interest as a microsampling technique to support drug discovery and development owing to its enormous ethical and practical benefits. Quantitative determinations of drugs and/or their metabolites collected in DBS matrix in its current format, however, have encountered technical challenges and regulatory uncertainty. The challenges of DBS bioanalysis are largely ascribed to the way how samples are collected and analyzed. Currently, an uncontrolled amount of a blood sample, e.g. 20 µl, is collected per time point per sample and spotted onto cellulose paper. Quantitation is based on removal of a fixed area of the DBS sample, resulting in sample waste, a need for mechanical punching and concomitant potential punching carryover, uncertainty in recovery assessment and the adverse impact of hematocrit on accurate quantitation. Here, we describe the concept and applications of a novel concept, namely perforated dried blood spot (PDBS), for accurate microsampling that addresses previous challenges. Advantages of PDBS are enumerated and compared with conventional DBS in the context of microsampling and liquid chromatography tandem mass spectrometry bioanalysis. Two approaches for accurate microsampling of a small volume of blood (5 µl) are proposed and demonstrated, i.e. Microsafe® pipettes and the Drummond incremental pipette. Two online sample enrichment techniques to enhance liquid chromatography tandem mass spectrometry sensitivity for microsampling bioanalysis are discussed. The PDBS concept was successfully applied for accurate sample collection (5 µl) in a toxicokinetic study in rats given a single oral gavage dose of acetaminophen. Perspectives on bioanalytical method validation for regulated DBS/PDBS microsampling are also presented. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
Thiamine deficiency, if detected early in infancy, can be treated with thiamine supplementation and can prevent seizures, other disabilities and death. The dried blood spot (DBS) sampling technique is an attractive sample collection technique for infants. The present study reports the development and validation of a highly sensitive and precise method for quantification of thiamine diphosphate from DBS. The method utilizes full‐spot analysis of a volumetrically deposited 40 μl DBS. The analyte was extracted from the DBS using 50% methanol and then derivatized using potassium ferricyanide to thiochrome. Separation was achieved with the help of an Inertsil ODS C18 column (5.0 μm, 250 × 4.6 mm) using 150 mm phosphate buffer pH 7–acetonitrile (90:10, % v/v) as the mobile phase. The use of a fluorimetric detector gave a good response to the thiochrome derivative offering good sensitivity for the method. The excitation and emission wavelengths were 367 and 435 nm, respectively. The limit of detection and lower limit of quantification were 5 and 10 ng/ml, respectively. Linearity was demonstrated from 10 to 1000 ng/ml, and precision (CV) was <12.08%, at all tested quality control levels. The method accuracy was 89.34–118.89% with recoveries >80%. Bland–Altman analysis of DBS sampling vs. whole blood demonstrated a mean bias of only 1.16 ng/ml, with a majority of the 60 investigated patient samples lying within 7.2% of the corresponding concentration measured in blood, thereby meeting the clinical desirable biological specification criterion and showing that the two methods are comparable.  相似文献   

5.
Blood samples stored as dried blood spots (DBSs) are emerging as a useful sampling and storage vehicle for a wide range of applications. Unfortunately, the surging popularity of DBS samples has not yet been accompanied by an improvement in automated techniques for extraction and analysis. As a first step towards overcoming this challenge, we have developed a prototype microfluidic system for quantification of amino acids in dried blood spots, in which analytes are extracted, mixed with internal standards, derivatized, and reconstituted for analysis by (off-line and in-line) tandem mass spectrometry. The new method is fast, robust, precise, and most importantly, compatible with automation. We propose that the new method can potentially contribute to a new generation of analytical techniques for quantifying analytes in DBS samples for a wide range of applications.  相似文献   

6.
A bioanalytical method for the quantification of tacrolimus (TAC) on dried blood spots (DBS) using liquid chromatography, electrospray ionization coupled with tandem mass spectrometry (LC‐ESI‐MS/MS) was developed and validated. It involves solvent extraction of a punch disk of DBS followed by liquid–liquid extraction. The analyte and the internal standard (IS, ascomycin) were separated on a phenyl column using an isocratic mobile phase elution at a flow rate of 0.3 mL/min. The assay was linear from 1 to 80 ng/mL. The mean recovery of TAC was 76.6%. Intra‐assay, inter‐assay imprecision and biases were all less than 15%. TAC on DBS was stable for at least 10 days at room temperature, and at least 24 h at 50°C. A chromatographic effect of the filter paper (Whatman 903) was not detected. The volume of blood (15–50 μL) and hematocrit of blood (ranging from 23.2 to 48.6%) did not show a significant influence on detection of TAC concentration by DBS‐LC‐MS/MS. Fifty samples from patients were detected by both DBS‐LC‐MS/MS and microparticle enzyme‐linked immunoassay (MEIA). TAC concentrations measured by DBS‐LC‐MS/MS method tended to be lower than those by MEIA. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
Dried blood spot (DBS) sampling and quantitative analyses of many current therapeutic drug monitoring (TDM)-guided drugs are advantageous because of the minimal invasive sampling strategy. Here, a fast and robust LC-MS/MS method was developed and analytically validated for simultaneous determination of venlafaxine (VEN) and O-desmethylvenlafaxine (ODV) in DBS. Six-millimeter circles were punched out from DBS collected on Whatman DMPK-C paper, and the DBS was extracted with acetonitrile/methanol at 1:3. The total run time was 4.8 min. The assay was linear in the range of 20–1,000 μg/L for both VEN and ODV. Assay accuracy and precision was well within limits of acceptance (LLOQ?=?20 μg/L). Normal hematocrit concentrations (0.30–0.50) did not influence the results neither did a normal spot volume (40–80 μL). Punch position at the perimeter instead of the center of the blood spot gave a bias ranging from 2.4 to 10.4 %. Correlation between plasma and spiked DBS samples was high. The concentrations found in spiked DBS samples were higher than those in plasma, indicating that a conversion factor for translation of DBS to plasma values is needed. This analytically validated method is suitable for determination of VEN and ODV in DBS and applicable for TDM. The method will be used for TDM of VEN in the Dutch CYSCE multicenter trial (NCT01778907).  相似文献   

8.
In the last few years, an increasing number of dried blood spot (DBS) sampling assays have been developed. With this increase, more insight is gained in the factors that possibly influence the performance of DBS assays. We have developed an assay for four commonly used immunosuppressants; some of them are possibly concomitantly prescribed: cyclosporin A (CsA), tacrolimus (TcR), sirolimus (SiR), and everolimus (EvE). Chromatographic separation from possible ion suppression was obtained within the total runtime of 4.2?min. Trifluoroacetic acid and ammonium acetate were used as mobile phase additives. The linearity ranged from 23.6 to 787, 1.14 to 30.3, 1.34 to 35.8, and 1.26 to 33.7?μg/L, for CsA, TcR, SiR, and EvE, respectively. Between- and within-run accuracy and precision were all within 15?% and extensive validation for DBS samples, such as hematocrit, blood spot volume, and spot punch location was performed. None of these factors were found to be of influence on the performance of the DBS assay.  相似文献   

9.
Dried saliva spot (DSS) sampling is a non-invasive sample collection technique for bioanalysis that can be potentially implemented at the patient's home. A UHPLC-MS/MS assay was developed using detergent-assisted sample extraction to quantify BMS-927711, a drug candidate in development for the treatment of migraines, in human DSS. By implementing DSS sampling at the patients' home, the bioanalytical sample collection for pharmacokinetic evaluation can be done at the time of the acute migraine attack without the need for clinical visits. DSS samples were prepared by spotting 15 μL of liquid saliva onto regular Whatman FTA™ DMPK-C cards and verified with a UV lamp (at λ 254 nm or 365 nm) during DSS punching. The 4-mm DSS punches in a 96-well plate were sonicated with 200 μL of [13C2, D4]-BMS-927711 internal standard (IS) solution in 20/80 MeOH/water for 10 min, followed by sonication with 50 μL of 100 mM NH4OAc with 1.0% Triton-X-100 (as detergent) prior to liquid-liquid extraction with 600 μL EtOAc/Hexane (90:10). UHPLC-MS/MS was performed with an Aquity® UPLC BEH C18 Column (2.1 × 50 mm, 1.7 μm) on a Triple Quad™ 5500 mass spectrometer. The assay was linear with a concentration range from 2.00 to 1000 ng mL−1 for BMS-927711 in human saliva. The intra- and inter-assay precision was within 8.8% CV, and the accuracy was within ±6.7% Dev of the nominal concentration values. This UHPLC–MS/MS assay has been successfully applied to determine the drug's pharmacokinetics within a clinical study. For the first time, we observed BMS-927711 exposure in human DSS, confirming the suitability of this sampling technique for migraine patients to use at home. Detergent-assisted extraction with Triton-X-100 could be very useful in DSS or other dried matrix spot (DMS) assays to overcome low or inconsistent analyte recovery issues.  相似文献   

10.
11.
A rapid and highly sensitive liquid chromatography–tandem mass spectrometric (LC‐MS/MS) method for determination of dapiprazole on rat dried blood spots and urine was developed and validated. The chromatographic separation was achieved on a reverse‐phase C18 column (250 × 4.6 mm i.d., 5 µm), using 20 mm ammonium acetate (pH adjusted to 4.0 with acetic acid) and acetonitrile (80:20, v/v) as a mobile phase at 25 °C. LC‐MS detection was performed with selective ion monitoring using target ions at m/z 326 and m/z 306 for dapiprazole and mepiprazole used as internal standard, respectively. The calibration curve showed a good linearity in the concentration range of 1–3000 ng/mL. The effect of hematocrit on extraction of dapiprazole from DBS was evaluated. The mean recoveries of dapiprazole from DBS and urine were 93.88 and 90.29% respectively. The intra‐ and inter‐day precisions were <4.19% in DBS as well as urine. The limits of detection and quantification were 0.30 and 1.10 ng/mL in DBS and 0.45 and 1.50 ng/mL in urine samples, respectively. The method was validated as per US Food and Drug Administration guidelines and successfully applied to a pharmacokinetic study of dapiprazole in rats. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
韩吉春  李广林  王小臣  骆亦奇 《色谱》2016,34(6):567-571
建立了一种高通量液相色谱-串联质谱技术检测干血点(DBS)中同型半胱氨酸(homocycteine, Hcy)的方法。以DBS为样本,homocystine-D8为同位素内标,二硫苏糖醇(DTT)为蛋白结合态Hcy的还原剂,使用含0.1%(v/v)甲酸、0.05%(v/v)三氟乙酸的乙腈溶液萃取。整个前处理过程使用自动移液平台及96孔板实现高通量自动化操作。处理后的样本经过Phenomenex CN柱分离,使用多反应监测模式进行LC-MS/MS分析。结果表明:Hcy的检出限为0.12 μ mol/L(S/N=3),定量限为0.46 μ mol/L(S/N=10)。Hcy在1.16~148.00 μ mol/L范围内线性关系良好,R2=0.994。Hcy的平均回收率为(103.0±4.97)%~(112.0±2.13)%,日内相对标准偏差(RSD)为1.9%~4.6%,日间RSD为1.5%~7.1%。DBS样本在不同温度(-4、-20、22和37℃)下储存不同时间(0、1、2、3、4、5、6、14天)后的稳定性试验显示样本总体RSD<15%,经前处理后的样本在48 h内的稳定性试验显示样本总体RSD<5%。该方法与传统生化分析方法的相关性好(R2=0.9818, n=47)。  相似文献   

13.
An early clinical development study (phase I) was conducted to determine the usefulness of dried blood spot (DBS) sampling as an alternative to venous sampling for phenotyping and genotyping of CYP450 enzymes in healthy volunteers. Midazolam (MDZ) was used as a substrate for phenotyping CYP3A4 activity; the concentrations of MDZ and its main metabolite 1'-hydroxymidazolam (1-OH MDZ) were compared between the DBS method from finger punctures, plasma and whole blood (WB), drawn by venipuncture, whereby several methodological parameters were studied (i.e. punch width, amount of dots analyzed and storage time stability). Genotyping between DBS and venous WB samples was compared for CYP2D6 (*3, *4, *6), CYP2C19 (*2, *3), CYP3A4 (*1B) and CYP3A5 (*3C). In addition, the subject's and phlebotomist's satisfaction with venous blood sampling compared with the DBS method was evaluated using a standardized questionnaire. An LC-MS/MS method for the quantification of the MDZ and 1-OH MDZ concentrations in DBS samples was developed and validated in the range of 0.100-100 ng/mL. No compromises were made for the limits of quantification of the DBS-LC-MS/MS method vs the authentic plasma and WB methods.  相似文献   

14.
Thiorphan, the active metabolite of racecadotril, can undergo oxidation in biological matrices such as blood and plasma. In bioanalysis, a general approach for the stabilization of such a molecule is to derivatize the thiol group to a more stable thioether, often requiring complex handling procedures at the clinical site. In this research, the concept of dried blood spot (DBS) on‐card derivatization was evaluated to stabilize thiorphan. DBS cards were in‐house pre‐treated with 2‐bromo‐3′‐methoxyacetophenone and left to dry prior to blood spotting. Thiorphan was shown to be effectively derivatized to thiorphan–methoxyacetophenone once applied on the in‐house pre‐treated cards. Thiorphan–methoxyacetophenone was extracted by soaking a 6 mm DBS punch in methanol containing the internal standard (thiorphan–methoxyacetophenone‐D5). Chromatographic separation was achieved on a Waters XBridge C18 column with a gradient elution of 5 m m NH4HCO3 and methanol in 2.5 min and detection by ESI(+)/MS/MS. A linear (weighted 1/x2) relationship was obtained over a concentration range of 5.00–600.00 ng/mL. The assay met regulatory guidelines acceptance criteria for sensitivity, selectivity, precision and accuracy, matrix effect, recovery, dilution integrity and multiple stability evaluations. The DBS on‐card derivatization has shown to be an easy and reliable alternative form of sample collection for the quantification of thiorphan. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
An approach has been developed for the quantitative determination of concentrations of centchroman ( I), a nonsteroidal once‐a‐week oral contraceptive, and its major metabolite (7‐desmethyl centchroman, II) using dried blood spots (DBS) on paper, rather than conventional plasma samples. The assay employed simple solvent extraction of the DBS sample circle (6 mm) requiring small blood volumes (30 μL) followed by reversed‐phase HPLC separation, combined with multiple reaction monitoring mass spectrometric detection. The calibration plot in matrix using d ‐trans‐hydroxy chroman as internal standard (IS) was linear (r2 = 0.998) over ranges of 1.5–240 and 4.5–720 ng/mL for I and II, respectively. The recoveries of both I and II were always >60% with quantification limits (signal‐to‐noise ratio = 10) of 1.5 and 4.5 ng/mL for I and II, respectively. The intra‐day and inter‐day precision (%RSD) and accuracy (%bias) variations in blood spots for both I and II were better than 13%. Moreover, both I and II were stable in DBS for at least 3 months when stored at room temperature. The developed method was successfully applied to the pharmacokinetic interaction study after oral administration of centchroman with and without co‐administration of carbamazepine in female Sprague–Dawley rats using serial sampling and results were comparable with the plasma concentrations reported earlier. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
Methylmalonic acid (MMA) and total homocysteine (tHCYS) concentrations are used to detect acquired and inborn errors of cobalamin (vitamin B12, Cbl) metabolism and to evaluate the effect of therapeutic interventions. Dried blood spot sampling offers a patient-friendly and easy alternative to plasma sampling. However, dried blood spot concentrations are not necessarily equal to plasma concentrations. Therefore, the objective of this work was to establish the relationship between MMA and tHYS dried blood spot and plasma concentrations to facilitate clinical implementation of dried blood spot sampling. MMA and tHCYS in both plasma and DBS were validated on ultra performance liquid chromatography–tandem mass spectrometry (UPLC–MS/MS). While position of the punch (in DBS) did affect tHCYS concentration, no influence of hematocrit (Ht) and blood volume on both MMA and tHCYS concentrations was observed. The plasma assay performed better than the DBS assay by most criteria. However, the DBS matrix was superior for tHCYS stability. Paired plasma and DBS samples were obtained from patients suspected for Cbl deficiency and from patients with a known inborn error of metabolism affecting MMA or tHCYS concentration. Based on the strong correlation of tHCYS in both matrices (y = 0.46 ± 1.12 (r2 = 0.91)), determination of tHCYS in plasma can be replaced by tHCYS in DBS. However, for MMA, a correlation in the higher (pathological) range of MMA exist, but no correlation was observed in the lower ranges. Therefore the added value of MMA concentrations in DBS is currently unknown and should be further investigated.  相似文献   

17.
As recently reported, dried blood spot (DBS) analysis is an advantageous technique for doping control purposes due to the minimal invasive sample collection, the simple and economic manner, as well as the low susceptibility to manipulation. Its general applicability to the sports drug testing arena has been shown for analytes of various substance classes, all of which comprise exclusively low molecular mass compounds. The aim of the present study was to investigate whether the technique of DBS analysis is applicable also to (pegylated) peptides with relevance for doping controls. As target analyte, peginesatide (Omontys, Hematide), a recently approved pegylated erythropoietin-mimetic peptide of approximately 45 kDa, tested for the treatment of anaemia in patients with renal failure, was chosen, which has been prohibited in elite sports due to its assumed endurance enhancing effects. Therefore, a detection method for peginesatide employing DBS was developed based on extraction, proteolytic digestion and cation-exchange purification followed by liquid chromatography-tandem mass spectrometry analysis. Eventually, the assay was validated for qualitative purposes and proved to be specific, sensitive (limit of detection, 10 ng/mL) and precise (relative standard deviations below 18%), demonstrating the general suitability of DBS analysis in sports drug testing also for (pegylated) peptides.  相似文献   

18.
Dried blood spots (DBS), collected as part of the newborn screening program (NSP) in the USA, is a valuable resource for studies on environmental chemical exposures and associated health outcomes in newborns. Nevertheless, determination of concentrations of environmental chemicals in DBS requires assays with great sensitivity, as the typical volume of blood available on a DBS with 16-mm diameter disc is approximately 50 μL. In this study, we developed a liquid–liquid extraction and high-performance liquid chromatography/tandem mass spectrometry method for the detection of perfluorooctanesulfonate (PFOS), perfluorooctanoate (PFOA), and bisphenol A (BPA) in DBS. The method was validated for accuracy, precision, and sensitivity, by spiking of target chemicals at different levels on Whatman 903 filter cards, which is used in the collection of DBS by the NSP. Contamination arising from collection, storage, and handling of DBS is an important issue to be considered in the analysis of trace levels of environmental chemicals in DBS. For the evaluation of the magnitude of background contamination, field blanks were prepared from unspotted portions of DBS filter cards collected by the NSP. The method was applied for the measurement of PFOS, PFOA, and BPA in 192 DBS specimens provided by NSP of New York State. PFOS and PFOA were detected in 100 % of the specimens analyzed. The concentrations of PFOS and PFOA measured in DBS were similar to those reported earlier in the whole blood samples of newborns. BPA was also found in 86 % of the specimens at concentrations ranging from 0.2 to 36 ng/mL (excluding two outliers). Further studies are needed to evaluate the sources of BPA exposures and health outcomes in newborns.  相似文献   

19.
A simple, short, and rugged LC–MS/MS method for the simultaneous determination of tenofovir, emtricitabine, elvitegravir and rilpivirine was developed and validated. Dried blood spots were prepared with 25 μL of spiked whole blood. A 3 mm punch was extracted with methanol containing labeled internal standards. Ten microliters was injected into the LC–MS/MS using isocratic mobile phase composed of 0.1% formic acid in water and 0.1% formic acid in acetonitrile (45: 55 v/v) at a flow rate of 0.25 mL/min. The method was validated in the range of 10–2000 ng/mL for all four analytes. The intra‐assay accuracy (RE) of the method was −4.73–4.78, 1.35–2.89, −8.89 to −0.49 and − 1.40–1.81 for tenofovir, emtricitabine, elvitegravir and rilpivirine, respectively. The inter‐assay accuracy was within ±15% of nominal and precision (CV) was <15%. The hematocrit effect on quantification was nonsignificant at the tested hematocrit levels (35–70%). The dried blood spot method showed good agreement with the plasma method, and hence can be used as an alternative to plasma method.  相似文献   

20.
Dried blood spot (DBS) technology is an emerging alternative for sample collection in bioanalysis. Dilution for DBS samples is a challenge due to its solid sample format. Currently, DBS samples requiring dilution were first extracted as regular samples and then diluted with extracted blank samples containing internal standard (IS). Since the dilution step is a volume-critical step, extra care has to be taken to achieve accurate dilution when dealing with limited volume extracted samples. Here, we introduce an alternative sample dilution for liquid chromatography/tandem mass spectrometry (LC/MS/MS) assays using IS to track the dilution step. Dilution factor-adjusted IS working solution was first added to the sample requiring dilution before sample processing; subsequently, the processed sample was approximately diluted into the assay linear response range before LC/MS/MS analysis. We define this approach as "IS-tracked dilution". The advantage of this approach is that the diluting step is tracked by the IS and is no longer a volume-critical step. Another recognized challenge related to sample dilution is automatic sample dilution using a liquid handler. This "IS-tracked dilution" may also help address some of the challenges for automatic sample dilution of liquid samples. This new dilution approach was proven to be effective and convenient in both plasma assays and DBS assays using omeprazole as a probe compound.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号