首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We studied the ion-pair formation dynamics of F2 at 18.385 eV (67.439 nm) using the velocity map imaging method. It was found that there are two dissociation channels corresponding to production of F(+)((1)D(2)) + F(-)((1)S(0)) and F(+)((3)P(j)) + F(-)((1)S(0)). The measured center-of-mass translational energy distribution shows that about 98% of the dissociation occurs via the F(+)((1)D(2)) channel. The measured angular distributions of the photofragments indicate that dissociation for the F(+)((3)P(j)) channel occurs via predissociation of Rydberg states converging to F(2)(+)(A(2)Pi(u)) and dissociation for the F(+)((1)D(2)) channel involves mainly a direct perpendicular transition into the ion-pair state, or X(1)Sigma(g)(+) --> 2(1)Pi(u), which is also supported by the transition dipole moment calculations .  相似文献   

2.
Photodissociation dynamics of iodoacetonitrile (ICH2CN) have been investigated at pump wavelengths of 266 and 304 nm using a photofragment ion image velocity mapping technique. At both wavelengths, the prompt C-I bond rupture takes place on the repulsive excited states to give I(2P3/2) and I*(2P1/2), and their speed and spatial distributions are simultaneously measured. The recoil anisotropy parameter (beta) at 266 nm is determined to be 1.10 and 1.60 for I and I*, respectively, while it is found to be much higher at 304 nm to give beta=1.70 and 1.90 for I and I*, respectively. The branching ratios for I*I channels are measured to be 0.724 and 0.136 at 266 and 304 nm, respectively, giving insights on nonadiabatic transition phenomena and relative oscillator strengths of optically accessible transitions of ICH2CN. Accordingly, relative oscillator strengths of parallel/perpendicular transitions and nonadiabatic transitions among the excited states are quantitatively characterized. A large portion of the available energy (41%-48%) goes into the internal energy of the CH2CN fragment. A modified impulsive model in which the CH2CN fragment is assumed to be rigid predicts the energy disposal quite well. Delocalization of an unpaired electron of the CH2CN radical during the C-I bond cleavage, leading to a large structural change of the CH2CN moiety, may be responsible for internally hot fragments.  相似文献   

3.
This study investigates the 234 nm photodissociation dynamics of cyclobutyl bromide using a two-dimensional photofragment velocity imaging technique. The spin-orbit ground- and excited-state Br(2P) atoms are state-selectively detected via [2+1] resonance enhanced multiphoton ionization (REMPI), whereas the cyclobutyl radicals are ionized using 157 nm laser light. The Br(2P(3/2)) and the Br(2P(1/2)) atoms and their c-C4H7 radical cofragments evidence a single-peaked, Gaussian-shaped translational energy distribution ranging from approximately 14 to approximately 39 kcal/mol and angular distributions with significant parallel character. The Br(2P(1/2))/ Br(2P(3/2)) spin-orbit branching ratio is determined to be 0.11 +/- 0.07 by momentum match between the Br(2P) photofragments and the recoiling c-C4H7 fragments, assuming a uniform photoionization probability of the c-C4H7 radicals with an internal energy range of 10-35 kcal/mol. The REMPI line strength ratio for the detection of Br(2P(3/2)) and Br(2P(1/2)) atoms at 233.681 and 234.021 nm, respectively, is therefore derived to be 0.10 +/- 0.07. The measured recoil kinetic energies of the c-C4H7 radicals, and the resulting distribution of internal energies, indicates some of the radicals are formed with total internal energies above the barrier to isomerization and subsequent dissociation, but our analysis indicates they may be stable due to the substantial fraction of the internal energy which is partitioned to rotational energy of the radicals.  相似文献   

4.
We have studied the wavelength-dependent photodissociation dynamics of jet-cooled ClO radical from 235 to 291 nm using velocity map ion imaging. We find that Cl(2P(3/2))+O(1D(2)) is the dominant channel above the O(1D(2)) threshold with minor contributions from the Cl(2P(J))+O(3P(J)) and Cl(2P(1/2))+O(1D(2)) channels. We have measured the photofragment angular distributions for each dissociation channel and find that the A 2pi state reached via a parallel transition carries most of the oscillator strength above the O(1D(2)) threshold. The formation of O(3P(J)) fragments with positive anisotropy is evidence of curve crossing from the A 2pi state to one of several dissociative states. The curve crossing probability increases with wavelength in good agreement with previous theoretical calculations. We have directly determined the O(1D(2)) threshold to be 38,050+/-20 cm(-1) by measuring O(1D(2)) quantum yield in the wavelength range of 260-270 nm. We also report on the predissociation dynamics of ClO below the O(1D(2)) threshold. We find that the branching ratio of Cl(2P(3/2))/Cl(2P(1/2)) is 1.5+/-0.1 at both 266 and 291 nm. The rotational depolarization of the anisotropy parameters of the Cl(2P(3/2)) fragments provides predissociation lifetimes of 1.5+/-0.2 ps for the 9-0 band and 1.0+/-0.4 ps for the 8-0 band, in reasonable agreement with previous spectroscopic and theoretical studies.  相似文献   

5.
The reaction times of several well-defined channels of the C-I bond rupture of methyl iodide from the A band, which involves nonadiabatic dynamics yielding ground state I(2P3/2) and spin-orbit excited I*(2P1/2) and ground and vibrationally excited CH3 fragments, have been measured by a combination of a femtosecond laser pump-probe scheme and velocity map imaging techniques using resonant detection of ground state CH3 fragments. The reaction times found for the different channels studied are directly related with the nonadiabatic nature of this multidimensional photodissociation reaction.  相似文献   

6.
An experimental and theoretical investigation of the dissociative electron attachment process in nitric oxide is presented. Measurements using the recently developed ion momentum imaging conclusively show the presence of two resonance features in the O(-) channel. These are found to dissociate to give N atoms in the (2)D and (2)P excited states respectively, thus settling the controversies regarding the possible dissociation limits of this process. Though the angular distribution of O(-) shows the resonances contributing to these dissociations are of Π symmetry and a mixture of Π and Σ or Δ symmetry respectively, our calculations using R-matrix theory show no direct electron attachment channel leading to O(-) through these resonances, as all the allowed resonances below 10 eV decay to either O + N(-) or O(-) + N((4)S) channels. We propose that indirect mechanisms through curve crossings lead to the experimentally observed results.  相似文献   

7.
The photodissociation dynamics of the ethyl radical C(2)H(5) has been investigated by velocity map imaging. Ethyl was produced by flash pyrolysis from n-propyl nitrite and excited to the A? (2)A(') (3s) Rydberg state around 250 nm. The energetically most favorable reaction channel in this wavelength region is dissociation to C(2)H(4) (ethene) + H. The H-atom dissociation products were ionized in a [1+1(')] process via the 1s-2p transition. The observed translational energy distribution is bimodal: A contribution of slow H-atoms with an isotropic angular distribution peaks at low translational energies. An expectation value for the fraction of excess energy released into translation of = 0.19 is derived from the data, typical for statistical dissociation reactions. In addition, a fast H-atom channel is observed, peaking around 1.8 eV. The latter shows an anisotropic distribution with β = 0.45. It originates from a direct dissociation process within less than a rotational period. Time-delay scans with varying extraction voltages indicate the presence of two rates for the formation of H-atoms. One rate with a sub-nanosecond time constant is associated with H-atoms with large translational energy; a second one with a time constant on the order of 100 ns is associated with H-atoms formed with low translational energy. The data confirm and extend those from previous experiments and remove some inconsistencies. Possible mechanisms for the dissociation are discussed in light of the new results as well as previous ones.  相似文献   

8.
This work describes a novel surface-scattering technique which combines resonance enhanced multiphoton ionization (REMPI) with velocity-map imaging (VMI) to yield quantum-state and 2D velocity component resolved distributions in the scattered molecular flux. As an initial test system, we explore hyperthermal scattering (E(inc) = 21(5) kcal mol(-1)) of jet cooled HCl from Au(111) on atomically flat mica surfaces at 500 K. The resulting images reveal 2D (v(in-plane) and v(out-of-plane)) velocity distributions dominated by two primary features: trapping/thermal-desorption (TD) and a hyperthermal, impulsively scattering (IS) distribution. In particular, the IS component is strongly forward scattered and largely resolved in the velocity map images, which allows us to probe correlations between rotational and translational degrees of freedom in the IS flux without any model dependent deconvolution from the TD fraction. These correlations reveal that HCl molecules which have undergone a large decrease in velocity parallel to scattering plane have actually gained the most rotational energy, reminiscent of a dynamical energy constraint between these two degrees of freedom. The data are reduced to a rotational energy map that correlates with velocity along and normal to the scattering plane, revealing that exchange occurs primarily between rotation and the in-plane kinetic energy component, with v(out-of-plane) playing a relatively minor role.  相似文献   

9.
A new imaging technique, reflectron multimass velocity map ion imaging, is used to study the vibrationally mediated photodissociation dynamics in the ethylene cation. The cation ground electronic state is prepared in specific vibrational levels by two-photon resonant, three-photon ionization via vibronic bands of (pi, nf) Rydberg states in the vicinity of the ionization potential of ethylene, then photodissociated through the (B 2A(g)) excited state. We simultaneously record spatially resolved images of parent C2H4+ ions as well as photofragment C2H3+ and C2H2+ ions originating in dissociation from the vibronic excitations in two distinct bands, 7f 4(0)2 and 8f 0(0)0, at roughly the same total energy. By analyzing the images, we directly obtain the total translation energy distributions for the two dissociation channels and the branching between them. The results show that there exist differences for competitive dissociation pathways between H and H2 elimination from C2H4+ depending on the vibronic preparation used, i.e., on the vibrational excitation in the ground state of the cation prior to photodissociation. Our findings are discussed in terms of the possible influence of the torsional excitation on competition between direct dissociation, isomerization, and radiationless transitions through conical intersections among the numerous electronic states that participate in the dissociation.  相似文献   

10.
The photodissociation dynamics of various aromatic molecules, studied using multimass ion imaging techniques, is reviewed. The experimental data reveals new isomerization and dissociation mechanisms. Our investigation of benzene, pyridine, and pyrimidine finds that H-atom elimination thresholds remain the same for the three molecules. We also notice that ring-opening dissociation thresholds decrease rapidly with the increase of the number of nitrogen atoms in the aromatic ring. Hydrogen atom elimination is the sole dissociation channel for benzene at 193 nm. Along with H-atom elimination, we observe five distinct ring-opening dissociation channels for pyridine at 193 nm. No dissociation channels were observed for benzene and pyridine at 248 nm. Ring-opening dissociation channels are the major channels for pyrimidine, which dissociates at 193 nm and also at 248 nm. A six-membered to seven-membered ring isomerization was observed for photodissociation processes involving toluene, m-xylene, aniline, 4-methylpyridine, alpha-fluorotoluene, and 4-fluorotoluene, indicating a general isomerization mechanism for all such aromatic molecules. What is significant, is that during the isomerization, atoms (i.e., carbon, nitrogen, fluorine, and hydrogen) belonging to respective alkyl or amino groups are involved in an exchange with atoms within the aromatic ring. This type of isomerization is not observed in other aromatic isomerization mechanisms. For small tyrosine chromophores, such as phenol, 4-methylphenol, and 4-ethylphenol, H-atom elimination from a repulsive excited state plays a key role. However, dissociation is quenched in large chromophores like 4-(2-aminoethyl)-phenol. Our work demonstrates the capability and high sensitivity of multimass ion imaging techniques in the study of aromatic compounds.  相似文献   

11.
To date, H-atom elimination from heteroaromatic molecules following UV excitation has been extensively studied, with the focus on key biological molecules such as chromophores of DNA bases and amino acids. Extending these studies to look at elimination of other non-hydride photoproducts is essential in creating a more complete picture of the photochemistry of these biomolecules in the gas-phase. To this effect, CH(3) elimination in anisole has been studied using time-resolved velocity map imaging (TR-VMI) for the first time, providing both time and energy information on the dynamics following photoexcitation at 200 nm. The extra dimension of energy afforded by these measurements has enabled us to address the role of πσ* states in the excited state dynamics of anisole as compared to the hydride counterpart (phenol), providing strong evidence to suggest that only CH(3) fragments eliminated with high kinetic energy are due to direct dissociation involving a (1)πσ* state. These measurements also suggest that indirect mechanisms such as statistical unimolecular decay could be contributing to the dynamics at much longer times.  相似文献   

12.
Velocity imaging technique combined with (2 + 1) resonance-enhanced multiphoton ionization (REMPI) has been used to detect the Br fragment in photodissociation of o-, m-, and p-bromofluorobenzene at 266 nm. The branching ratio of ground state Br(2P3/2) is found to be larger than 96%. Its translational energy distributions suggest that the Br fragments are generated via two dissociation channels for all the molecules. The fast route, which is missing in p-bromofluorobenzene detected previously by femtosecond laser spectroscopy, giving rise to an anisotropy parameter of 0.50-0.65, is attributed to a direct dissociation from a repulsive triplet T1(A' ') or T1(B1) state. The slow one with anisotropy parameter close to zero is proposed to stem from excitation of the lowest excited singlet (pi,pi*)state followed by predissociation along a repulsive triplet (pi,sigma*) state localized on the C-Br bond. For the minor product of spin-orbit excited state Br(2P1/2), the dissociating features are similar to those found in Br(2P3/2). Our kinetic and anisotropic features of decomposition obtained in m- and p-bromofluorobenzene are opposed to those by photofragment translational spectroscopy. Discrepancy between different methods is discussed in detail.  相似文献   

13.
The velocity distributions of the fragments produced by dissociative photoionization of C(70) have been measured at several photon energies in the extreme UV region, by using a flight-time resolved velocity map imaging (VMI) technique combined with a high-temperature molecular beam and synchrotron radiation. Average kinetic energy release was estimated for the six reaction steps of consecutive C(2) emission, starting from C(70)(2+) → C(68)(2+) + C(2) to C(60)(2+)→ C(58)(2+) + C(2). The total kinetic energy generated in each step shows a general tendency to increase with increasing hν, except for the first and fifth steps. This propensity reflects statistical redistributions of the excess energy in the transition states for the above fragmentation mechanism. Analysis based on the finite-heat-bath theory predicts the detectable minimum cluster sizes at the end of the C(2)-emission decay chain. They accord well with the minimum sizes of the observed ions, if the excess energy in the primary C(70)(2+) is assumed to be smaller by ~15 eV than the maximum available energy. The present VMI experiments reveal remarkably small kinetic energy release in the fifth step, in contradiction to theoretical predictions, which suggests involvement of other fragmentation mechanisms in the formation of C(60)(2+).  相似文献   

14.
The photodissociation dynamics of pyrrole-ammonia clusters (PyH·(NH(3))(n), n = 2-6) has been studied using a combination of velocity map imaging and non-resonant detection of the NH(4)(NH(3))(n-1) products. The excited state hydrogen-atom transfer mechanism (ESHT) is evidenced through delayed ionization and presents a threshold around 236.6 nm, in agreement with previous reports. A high resolution determination of the kinetic energy distributions (KEDs) of the products reveals slow (~0.15 eV) and structured distributions for all the ammonia cluster masses studied. The low values of the measured kinetic energy rule out the existence of a long-lived intermediate state, as it has been proposed previously. Instead, a direct N-H bond rupture, in the fashion of the photodissociation of bare pyrrole, is proposed. This assumption is supported by a careful analysis of the structure of the measured KEDs in terms of a discrete vibrational activity of the pyrrolyl co-fragment.  相似文献   

15.
We present photofragment imaging experiments to characterize potential photolytic precursors of three C4H7 radical isomers: 1-methylallyl, cyclopropylmethyl, and 3-buten-1-yl radicals. The experiments use 2+1 resonance enhanced multiphoton ionization (REMPI) with velocity map imaging to state-selectively detect the Br(2P(3/2)) and Br(2P(1/2)) atoms as a function of their recoil velocity imparted upon photodissociation of 1-bromo-2-butene, cyclopropylmethyl bromide, and 4-bromo-1-butene at 234 nm as well as the angular distributions of the photofragments. Energy and momentum conservation allows the internal energy distribution of the nascent momentum-matched radicals to be derived. The radicals are detected with single photon photoionization at 157 nm. In the case of the 1-methylallyl radical the photoionization cross section is expected to be independent of internal energy in the range of 7-30 kcal/mol. Thus, comparison of the product recoil kinetic energy distribution derived from the measurement of the 1-methylallyl velocity distribution, detecting the radicals with 157 nm photoionization, with a linear combination of the Br atom recoil kinetic energy distributions allows us to derive reliable REMPI line strength ratios for the detection of Br atoms and to test the assumption that the photoionization cross section does not strongly depend on the internal energy of the radical. This line strength ratio is then used to determine the branching to the Br(2P(3/2)) and Br(2P(1/2)) product channels for the other two photolytic systems and to determine the internal energy distribution of their momentum-matched radicals. (We also revisit earlier work on the photodissociation of cyclobutyl bromide which detected the Br atoms and momentum-matched cyclobutyl radicals.) This allows us to test whether the 157 nm photoionization of these radicals is insensitive to internal energy for the distribution of total internal (vibrational+rotational) energy produced. We find that 157 nm photoionization of cyclopropylmethyl radicals is relatively insensitive to internal energy, while 3-buten-1-yl radicals show a photoionization cross section that is markedly dependent on internal energy with the lowest internal energy radicals not efficiently detected by photoionization at 157 nm. We present electronic structure calculations of the radicals and their cations to understand the experimental results.  相似文献   

16.
The bond dissociation energy (D(0)) of the water dimer is determined by using state-to-state vibrational predissociation measurements following excitation of the bound OH stretch fundamental of the donor unit of the dimer. Velocity map imaging and resonance-enhanced multiphoton ionization (REMPI) are used to determine pair-correlated product velocity and translational energy distributions. H(2)O fragments are detected in the ground vibrational (000) and the first excited bending (010) states by 2 + 1 REMPI via the C? (1)B(1) (000) ← X? (1)A(1) (000 and 010) transitions. The fragments' velocity and center-of-mass translational energy distributions are determined from images of selected rovibrational levels of H(2)O. An accurate value for D(0) is obtained by fitting both the structure in the images and the maximum velocity of the fragments. This value, D(0) = 1105 ± 10 cm(-1) (13.2 ± 0.12 kJ/mol), is in excellent agreement with the recent theoretical value of D(0) = 1103 ± 4 cm(-1) (13.2 ± 0.05 kJ∕mol) suggested as a benchmark by Shank et al. [J. Chem. Phys. 130, 144314 (2009)].  相似文献   

17.
Utilizing threshold photoelectron-photoion coincidence (TPEPICO) velocity imaging, dissociation of state-selected CH(3)Cl(+) ions was investigated in the excitation energy range of 11.0-18.5 eV. TPEPICO time-of-flight mass spectra and three-dimensional time-sliced velocity images of CH(3)(+) dissociated from CH(3)Cl(+)(A(2)A(1) and B(2)E) ions were recorded. CH(3)(+) was kept as the most dominant fragment ion in the present energy range, while the branching ratio of CH(2)Cl(+) fragment was very low. For dissociation of CH(3)Cl(+)(A(2)A(1)) ions, a series of homocentric rings was clearly observed in the CH(3)(+) image, which was assigned as the excitation of umbrella vibration of CH(3)(+) ions. Moreover, a dependence of anisotropic parameters on the vibrational states of CH(3)(+)(1(1)A') provided a direct experimental evidence of a shallow potential well along the C-Cl bond rupture. For CH(3)Cl(+)(B(2)E) ions, total kinetic energy released distribution for CH(3)(+) fragmentation showed a near Maxwell-Boltzmann profile, indicating that the Cl-loss pathway from the B(2)E state was statistical predissociation. With the aid of calculated Cl-loss potential energy curves of CH(3)Cl(+), CH(3)(+) formation from CH(3)Cl(+)(A(2)A(1)) ions was a rapid direct fragmentation, while CH(3)Cl(+)(B(2)E) ions statistically dissociated to CH(3)(+) + Cl via internal conversion to the high vibrational states of X(2)E.  相似文献   

18.
The photodissociation dynamics of CBr4 at 267 nm has been studied using time of flight (TOF) mass spectrometry and ion velocity imaging techniques. The photochemical products are detected with resonance enhanced multiphoton ionization (REMPI) as well as single-photon vacuum ultraviolet ionization at 118 nm. REMPI at 266.65 and 266.71 nm was used to detect the ground Br(2P32) and spin-orbit excited Br(2P12) atoms, respectively. The translational energy and angular distributions are consistent with direct dissociation from an excited triplet state and indirect dissociation from high vibrational levels on the singlet ground state surface. Br2+ ions are also observed in the TOF spectra with a focused 267 nm laser. The counter fragment, CBr2+, is observed when this photolysis laser is unfocused, and photons at 118 nm are used to ionize the radical products. The translational energy distributions of the CBr2+ and Br2+ products can be momentum matched, which indicates that molecular Br2 elimination is one of the primary dissociation channels.  相似文献   

19.
The photodissociation dynamics of Au-Xe leading to Xe(+) formation via the Ξ(1∕2)-X(2)Σ(+) (v('), 0) band system (41?500-41?800 cm(-1)) have been investigated by velocity map imaging. Five product channels have been indentified, which can be assigned to photoinduced charge transfer followed by photodissociation in either the neutral or the [Au-Xe](+) species. For the neutral species, charge transfer occurs via a superexcited Rydberg state prior to dissociative ionization, while single-photon excitation of the gold atom in Au(+)-Xe accesses an (Au(+))?-Xe excited state that couples to a dissociative continuum in Au-Xe(+). Mechanisms by which charge transfer occurs are proposed, and branching ratios for Xe(+) formation via the superexcited Rydberg state are reported. The bond dissociation energy for the first excited state of Au(+)-Xe is determined to be ~9720 ± 110 cm(-1).  相似文献   

20.
The N2(+) states lying in the ionization region of 26-45 eV and the dissociation dynamics are investigated by high-resolution threshold photoelectron spectroscopy and threshold photoelectron-photoion coincidence spectroscopy. The threshold photoelectron spectrum exhibits several broad bands as well as sharp peaks. The band features are assigned to the N2(+) states associated with the removal of an inner-valence electron, by a comparison with a configuration interaction calculation. In contrast, most of the sharp peaks on the threshold photoelectron spectrum are allocated to ionic Rydberg states converging to N2(2+). Dissociation products formed from the inner-valence N2(+) states are determined by threshold photoelectron-photoion coincidence spectroscopy. The dissociation dynamics of the inner-valence ionic states is discussed with reference to the potential energy curves calculated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号