首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An extensive series of soluble dilanthanum endohedral fullerenes that extends from La(2)C(90) to La(2)C(138) has been discovered. The most abundant of these, the nanotubular La(2)@D(5)(450)-C(100), has been isolated in pure form and characterized by single-crystal X-ray diffraction.  相似文献   

2.
The chemical functionalization of endohedral (metallo)fullerenes has become a main focus of research in the last few years. It has been found that the reactivity of endohedral (metallo)fullerenes may be quite different from that of the empty fullerenes. Encapsulated species have an enormous influence on the thermodynamics, kinetics, and regiochemistry of the exohedral addition reactions undergone by these species. A detailed understanding of the changes in chemical reactivity due to incarceration of atoms or clusters of atoms is essential to assist the synthesis of new functionalized endohedral fullerenes with specific properties. Herein, we report the study of the Diels-Alder cycloaddition between 1,3-butadiene and all nonequivalent bonds of the Ti(2)C(2)@D(3h)-C(78) metallic carbide endohedral metallofullerene (EMF) at the BP86/TZP//BP86/DZP level of theory. The results obtained are compared with those found by some of us at the same level of theory for the D(3h)-C(78) free cage and the M(3)N@D(3h)-C(78) (M=Sc and Y) metallic nitride EMFs. It is found that the free cage is more reactive than the Ti(2)C(2)@D(3h)-C(78) EMF and this, in turn, has a higher reactivity than M(3)N@D(3h)-C(78). The results indicate that, for Ti(2)C(2)@D(3h)-C(78), the corannulene-type [5,6] bonds c and f, and the type B [6,6] bond 3 are those thermodynamically and kinetically preferred. In contrast, the D(3h)-C(78) free cage has a preference for addition to the [6,6] 1 and 6 bonds and the [5,6] b bond, whereas M(3)N@D(3h)-C(78) favors additions to the [6,6] 6 (M=Sc) and [5,6] d (M=Y) bonds. The reasons for the regioselectivity found in Ti(2)C(2)@D(3h)-C(78) are discussed.  相似文献   

3.
Two isomers of Sm@C(92) and four isomers of Sm@C(94) were isolated from carbon soot obtained by electric arc vaporization of carbon rods doped with Sm(2)O(3). Analysis of the structures by single-crystal X-ray diffraction on cocrystals formed with Ni(II)(octaethylporphyrin) reveals the identities of two of the Sm@C(92) isomers: Sm@C(92)(I), which is the more abundant isomer, is Sm@C(1)(42)-C(92), and Sm@C(92)(II) is Sm@C(s)(24)-C(92). The structure of the most abundant form of the four isomers of Sm@C(94), Sm@C(94)(I), is Sm@C(3v)(134)-C(94), which utilizes the same cage isomer as the previously known Ca@C(3v)(134)-C(94) and Tm@C(3v)(134)-C(94). All of the structurally characterized isomers obey the isolated pentagon rule. While the four Sm@C(90) and five isomers of Sm@C(84) belong to common isomerization maps that allow these isomers to be interconverted through Stone-Wales transformations, Sm@C(1)(42)-C(92) and Sm@C(s)(24)-C(92) are not related to each other by any set of Stone-Wales transformations. UV-vis-NIR spectroscopy and computational studies indicate that Sm@C(1)(42)-C(92) is more stable than Sm@C(s)(24)-C(92) but possesses a smaller HOMO-LUMO gap. While the electronic structures of these endohedrals can be formally described as Sm(2+)@C(2n)(2-), the net charge transferred to the cage is less than two due to some back-donation of electrons from π orbitals of the cage to the metal ion.  相似文献   

4.
Structural characterizations of three new mixed-metal endohedrals, GdSc 2N@ I h -C80, Gd 2ScN@ I h -C80, and TbSc 2@ I h -C80, have been obtained by single-crystal X-ray diffraction on GdSc 2N@ I h -C80 x Ni (II)(OEP) x 2C 6H 6, Gd 2ScN@ I h -C 80 x Ni(II)(OEP) x 2C6H6, and TbSc 2N@ I h -C80 x Ni (II)(OEP) x 2C6H6. All three have I h -C 80 cages and planar MM' 2N units. The central nitride ion is positioned further from the larger Gd3+ or Tb3+ ions and closer to the smaller Sc3+ ions. The MM' 2N units show a remarkable degree of orientational order in these and related compounds in which the endohedral fullerene is cocrystallized with a metalloporphyrin. The MM' 2N units are oriented perpendicularly to the porphyrin plane and aligned along one of the N-Ni-N axes of the porphyrin. The smaller Sc3+ ions show a marked preference to lie near the porphyrin plane. The larger Gd3+ or Tb3+ ions assume positions further from the plane of the porphyrin. The roles of dipole forces and electrostatic forces in ordering these cocrystals of endohedral fullerenes and metalloporphyrins are considered.  相似文献   

5.
Although there are 51 568 non-IPR and 24 IPR structures for C84, the egg-shaped endohedral fullerenes Tm3N@C(s)(51 365)-C84 and Gd3N@C(s)(51 365)-C84 utilize the same non-IPR cage structure as found initially for Tb3N@C(s)(51 365)-C84.  相似文献   

6.
Zhao X  Gao WY  Yang T  Zheng JJ  Li LS  He L  Cao RJ  Nagase S 《Inorganic chemistry》2012,51(4):2039-2045
The geometric, electronic structure, and thermodynamic stability of large gadolinium-containing endohedral metallofullerenes, Gd(2)@C(98), have been systematically investigated by comprehensive density functional theory calculations combined with statistical mechanics treatments. The Gd(2)@C(2)(230924)-C(98) structure, which satisfies the isolated-pentagon rule (IPR), is determined to possess the lowest energy followed with some stable non-IPR isomers. In order to clarify the relative stabilities at elevated temperatures, entropy contributions are taken into account on the basis of the Gibbs energy at the B3LYP level for the first time. Interestingly, a novel non-IPR Gd(2)@C(1)(168785)-C(98) isomer which has one pair of pentagon adjacency is more thermodynamically stable than the lowest energy IPR species within a wide temperature interval related to fullerene formation. Therefore, the Gd(2)@C(1)(168785)-C(98) is predicted to be the most proper isomer obtained experimentally, which is the largest non-IPR carbon cage found so far. Our findings demonstrate that interaction between metals and carbon cages could stabilize the fused pentagons effectively, and thus, the non-IPR isomers should not be ignored in some cases of endohedral metallofullerenes. The IR features of Gd(2)@C(98) are simulated to assist its future experimental characterization.  相似文献   

7.
We analyze the electronic structure of carbide endohedral metallofullerenes of the type Sc(2)C(2)@C(82) and study the possibility of rotation of the encapsulated Sc(2)C(2) moiety in the interior of the cage. Moreover, we rationalize the higher abundance of M(2)C(2)@C(82) (M = Sc, Y) in which the metal-carbide cluster is encapsulated in the C(3v)-C(82):8 carbon cage with respect to other carbides of the same family on the basis of the formal transfer of four electrons from the cluster to the cage and sizeable (LUMO-3)-(LUMO-2) gap in the empty cages. This rule also applies to all those endohedral metallofullerenes in which the encapsulated cluster transfers four electrons to the carbon cage as, for example, the reduced [M@C(82)](-) systems (M = group 3 or lanthanide metal ion).  相似文献   

8.
X-ray analyses of the cocrystals of a series of carbide cluster metallofullerenes Sc(2)C(2)@C(2n) (n = 40-42) with cobalt(II) octaethylporphyrin present new insights into the molecular structures and cluster-cage interactions of these less-explored species. Along with the unambiguous identification of the cage structures for the three isomers of Sc(2)C(2)@C(2v)(5)-C(80), Sc(2)C(2)@C(3v)(8)-C(82), and Sc(2)C(2)@D(2d)(23)-C(84), a clear correlation between the cluster strain and cage size is observed in this series: Sc-Sc distances and dihedral angles of the bent cluster increase along with cage expansion, indicating that the bending strain within the cluster makes it pursue a planar structure to the greatest degree possible. However, the C-C distances within Sc(2)C(2) remain unchanged when the cage expands, perhaps because of the unusual bent structure of the cluster, preventing contact between the cage and the C(2) unit. Moreover, analyses revealed that larger cages provide more space for the cluster to rotate. The preferential formation of cluster endohedral metallofullerenes for scandium might be associated with its small ionic radius and the strong coordination ability as well.  相似文献   

9.
The nanoscale parameters of metal clusters and lattices have a crucial influence on the macroscopic properties of materials. Herein, we provide a detailed study on the size and shape of isolated yttrium carbide clusters in different fullerene cages. A family of diyttrium endohedral metallofullerenes with the general formula of Y(2)C(2n) (n = 40-59) are reported. The high field (13)C nuclear magnetic resonance (NMR) and density functional theory (DFT) methods are employed to examine this yttrium carbide cluster in certain family members, Y(2)C(2)@D(5)(450)-C(100), Y(2)C(2)@D(3)(85)-C(92), Y(2)C(2)@C(84), Y(2)C(2)@C(3v)(8)-C(82), and Y(2)C(2)@C(s)(6)-C(82). The results of this study suggest that decreasing the size of a fullerene cage with the same (Y(2)C(2))(4+) cluster results in nanoscale fullerene compression (NFC) from a nearly linear stretched geometry to a constrained "butterfly" structure. The (13)C NMR chemical shift and scalar (1)J(YC) coupling parameters provide a very sensitive measure of this NFC effect for the (Y(2)C(2))(4+) cluster. The crystal structural parameters of a previously reported metal carbide, Y(2)C(3) are directly compared to the (Y(2)C(2))(4+) cluster in the current metallofullerene study.  相似文献   

10.
Three isomers of Sm@C(82) that are soluble in organic solvents were obtained from the carbon soot produced by vaporization of hollow carbon rods doped with Sm(2)O(3)/graphite powder in an electric arc. These isomers were numbered as Sm@C(82)(I), Sm@C(82)(II), and Sm@C(82)(III) in order of their elution times from HPLC chromatography on a Buckyprep column with toluene as the eluent. The identities of isomers, Sm@C(82)(I) as Sm@C(s)(6)-C(82), Sm@C(82)(II) as Sm@C(3v)(7)-C(82), and Sm@C(82)(III) as Sm@C(2)(5)-C(82), were determined by single-crystal X-ray diffraction on cocrystals formed with Ni(octaethylporphyrin). For endohedral fullerenes like La@C(82), which have three electrons transferred to the cage to produce the M(3+)@(C(82))(3-) electronic distribution, generally only two soluble isomers (e.g., La@C(2v)(9)-C(82) (major) and La@C(s)(6)-C(82) (minor)) are observed. In contrast, with samarium, which generates the M(2+)@(C(82))(2-) electronic distribution, five soluble isomers of Sm@C(82) have been detected, three in this study, the other two in two related prior studies. The structures of the four Sm@C(82) isomers that are currently established are Sm@C(2)(5)-C(82), Sm@C(s)(6)-C(82), Sm@C(3v)(7)-C(82), and Sm@C(2v)(9)-C(82). All of these isomers obey the isolated pentagon rule (IPR) and are sequentially interconvertable through Stone-Wales transformations.  相似文献   

11.
A Sc(2)C(84) isomer, previously assumed to be Sc(2)@C(84), is unambiguously identified as a new carbide cluster metallofullerene Sc(2)C(2)@C(s)(6)-C(82) using both NMR spectroscopy and X-ray crystallography. The (13)C-nuclei signal of the internal C(2)-unit was observed at 244.4 ppm with a 15% (13)C-enriched sample. Temperature-dependent dynamic motion of the internal Sc(2)C(2) cluster is also revealed with NMR spectrometry. Moreover, the chemical property of Sc(2)C(2)@C(s)(6)-C(82) is investigated for the first time using 3-triphenylmethyl-5-oxazolidinone (1) which provides a 1,3-dipolar reagent under heating. Regarding the low cage symmetry of this endohedral which contains 44 types of nonequivalent cage carbons, it is surprising to find that only one monoadduct isomer is formed in the reaction. Single-crystal X-ray results of the isolated pyrrolidino derivative Sc(2)C(2)@C(s)(6)-C(82)N(CH(2))(2)Trt (2) reveal that the addition takes place at a [6,6]-bond junction, which is far from either of the two Sc atoms. Such a highly regioselective addition pattern can be reasonably interpreted by analyzing the frontier molecular orbitals of the endohedral. Electronic and electrochemical investigations reveal that adduct 2 has a larger highest occupied molecular orbital-lowest unoccupied molecular orbital (HOMO-LUMO) gap than pristine Sc(2)C(2)@C(s)(6)-C(82); accordingly, it is more stable.  相似文献   

12.
A major hurdle hampering the development of fullerenes, endohedral metallofullerenes, and nanotubes has been the difficulty of obtaining high purity samples. Soots prepared in the usual manner via a Kr?tschmer-Huffman electric-arc generator consist of mixtures of insoluble carbonaceous materials and soluble fullerenes: C60, C70, C76, C78, C84, etc. When metals are introduced as endohedral species the complexity of the resultant soot is even greater because of the presence of multiple isomers of both the empty fullerenes and the endohedral metallofullerenes. Here, for the first time, we report that lanthanide trimetallic nitride endohedral metallofullerenes, A3N@C80 (A = lanthanide atom, e.g., Er, Gd, Ho, Lu, Sc, Tb, Tm, Y), can be obtained in pure form directly from as-prepared soots in a single facile step by taking advantage of their extraordinary kinetic chemical stability with respect to the other fullerenes in Diels-Alder reactions with a cyclopentadiene-functionalized resin. We show that careful control of conditions (stoichiometry, time, temperature) allows separation of fullerenes with different cage sizes, as well as isomeric species. Furthermore, the Diels-Alder reaction is thermally reversible, and we demonstrated that the bound empty-cage fullerenes and classical endohedral metallofullerenes can be recovered by displacement with maleic anhydride.  相似文献   

13.
Fullerene crystals or films have drawn much interest because they are good candidates for use in the construction of electronic devices. The results of theoretical calculations revealed that the conductivity properties of I(h)-C(80) endohedral metallofullerenes (EMFs) vary depending on the encapsulated metal species. We experimentally investigated the solid-state structures and charge-carrier mobilities of I(h)-C(80) EMFs La(2)@C(80), Sc(3)N@C(80), and Sc(3)C(2)@C(80). The thin film of Sc(3)C(2)@C(80) exhibits a high electron mobility μ = 0.13 cm(2) V(-1) s(-1) under normal temperature and atmospheric pressure, as determined using flash-photolysis time-resolved microwave conductivity measurements. This electron mobility is 2 orders of magnitude higher than the mobility of La(2)@C(80) or Sc(3)N@C(80).  相似文献   

14.
The recent finding that isomer 2 of Tb(3)N@C(84) uses one of the 51,568 possible nonisolated pentagon rule (non-IPR) structures for the C(84) cage rather than one of the 24 cage isomers that do obey the IPR suggests that further experimental work on the structure of larger endohedrals is needed to observe the utility of the IPR rule in this uncharted territory. The structures of the newly synthesized endohedral fullerenes--Tb(3)N@C(88), Tb(3)N@C(86), and the Ih and D(5)(h) isomers of Tb(3)N@C(80)--have been determined by single-crystal X-ray diffraction on samples cocrystallized with NiII(octaethylporphyrin). In contrast to the situation for isomer 2 of Tb(3)N@C(84), the structures of Tb(3)N@C(88) and Tb(3)N@C(86) do conform to the IPR. Both Tb(3)N@C(88) and Tb(3)N@C(86) have chiral structures with D(2) symmetry for Tb(3)N@C(880 and D(3) symmetry for Tb(3)N@C(86). Within this group of endohedrals, the size of the carbon cage affects the Tb-N and Tb-C distances, the orientations of the carbon cage with respect to the porphyrin plane, the locations of the metal ions and their orientations relative to the porphyrin plane, and the degree of pyramidalization of the Tb(3)N unit.  相似文献   

15.
A non isolated pentagon rule metallic sulfide clusterfullerene, Sc(2)S@C(s)(10528)-C(72), has been isolated from a raw mixture of Sc(2)S@C(2n) (n = 35-50) obtained by arc-discharging graphite rods packed with Sc(2)O(3) and graphite powder under an atmosphere of SO(2) and helium. Multistage HPLC methods were utilized to isolate and purify the Sc(2)S@C(72). The purified Sc(2)S@C(s)(10528)-C(72) was characterized by mass spectrometry, UV-vis-NIR absorption spectroscopy, cyclic voltammetry, and single-crystal X-ray diffraction. The crystallographic analysis unambiguously elucidated that the C(72) fullerene cage violates the isolated pentagon rule, and the cage symmetry was assigned to C(s)(10528)-C(72). The electrochemical behavior of Sc(2)S@C(s)(10528)-C(72) shows a major difference from those of Sc(2)S@C(s)(6)-C(82) and Sc(2)S@C(3v)(8)-C(82) as well as the other metallic clusterfullerenes. Computational studies show that the Sc(2)S cluster transfers four electrons to the C(72) cage and C(s)(10528)-C(72) is the most stable cage isomer for both empty C(72)(4-) and Sc(2)S@C(72), among the many possibilities. The structural differences between the reported fullerenes with C(72) cages are discussed, and it is concluded that both the transfer of four electrons to the cage and the geometrical requirements of the encaged Sc(2)S cluster play important roles in the stabilization of the C(s)(10528)-C(72) cage.  相似文献   

16.
High-performance liquid chromatography was used to isolate two new trimetallic nitride endohedral fullerenes, Gd3N@C2n (n = 42 and 44), and they were characterized by MALDI-TOF mass spectrometry, UV-vis-NIR, and cyclic voltammetry. It was found that their electronic HOMO-LUMO gaps depend pronouncedly on the size of the cage, from a large band gap for Gd3N@C80 (2.02 V) to a small band gap for Gd3N@C88 (1.49 V). The electrochemical properties also change dramatically with the size of the cage, going from irreversible for the C80 cage to reversible for Gd3N@C88. The latter is the largest trimetallic cluster inside C88 isolated and characterized to date. Gd3N@C88 has one of the lowest electrochemical energy gaps for a nonderivatized metallofullerene.  相似文献   

17.
We show by means of density functional calculations that the previously synthesized metallofullerene Ti2C80 does not take the form of Ti2@C80, but is a titanium carbide endohedral metallofullerene, Ti2C2@C78, that has a C78(6-)(D3h) cage which follows faithfully the stable closed-shell electronic rule.  相似文献   

18.
We describe the first example of scandium dimetallofullerenes, Sc(2)@C(3v)(8)-C(82), which has the same cage as the previously assigned scandium carbide cluster fullerene Sc(2)C(2)@C(3v)(8)-C(82) but they exhibit distinctly different electronic configurations and electronic behaviours, confirming the drastic influence of the internal C(2) unit.  相似文献   

19.
Small hydrocarbon complexes (X@cage) incorporating cage-centered endohedral atoms and ions (X = H(+), H, He, Ne, Ar, Li(0,+), Be(0,+,2+), Na(0,+), Mg(0,+,2+)) have been studied at the B3LYP/6-31G(d) hybrid HF/DFT level of theory. No tetrahedrane (C(4)H(4), T(d)()) endohedral complexes are minima, not even with the very small hydrogen atom or beryllium dication. Cubane (C(8)H(8), O(h)()) and bicyclo[2.2.2]octane (C(8)H(14), D(3)(h)()) minima are limited to encapsulating species smaller than Ne and Na(+). Despite its intermediate size, adamantane (C(10)H(16), T(d)()) can enclose a wide variety of endohedral atoms and ions including H, He, Ne, Li(0,+), Be(0,+,2+), Na(0,+), and Mg(2+). In contrast, the truncated tetrahedrane (C(12)H(12), T(d)()) encapsulates fewer species, while the D(4)(d)() symmetric C(16)H(16) hydrocarbon cage (see Table of Contents graphic) encapsulates all but the larger Be, Mg, and Mg(+) species. The host cages have more compact geometries when metal atoms, rather than cations, are inside. This is due to electron donation from the endohedral metals into C-C bonding and C-H antibonding cage molecular orbitals. The relative stabilities of endohedral minima are evaluated by comparing their energies (E(endo)) to the sum of their isolated components (E(inc) = E(endo) - E(cage) - E(x)) and to their exohedral isomer energies (E(isom) = E(endo) - E(exo)). Although exohedral binding is preferred to endohedral encapsulation without exception (i.e., E(isom) is always exothermic), Be(2+)@C(10)H(16) (T(d)(); -235.5 kcal/mol), Li(+)@C(12)H(12) (T(d)(); 50.2 kcal/mol), Be(2+)@C(12)H(12) (T(d)(); -181.2 kcal/mol), Mg(2+)@C(12)H(12) (T(d)(); -45.0 kcal/mol), Li(+)@C(16)H(16) (D(4)(d)(); 13.3 kcal/mol), Be(+)@C(16)H(16) (C(4)(v)(); 31.8 kcal/mol), Be(2+)@C(16)H(16) (D(4)(d)(); -239.2 kcal/mol), and Mg(2+)@C(16)H(16) (D(4)(d)(); -37.7 kcal/mol) are relatively stable as compared to experimentally known He@C(20)H(20) (I(h)()), which has an E(inc) = 37.9 kcal/mol and E(isom) = -35.4 kcal/mol. Overall, endohedral cage complexes with low parent cage strain energies, large cage internal cavity volumes, and a small, highly charged guest species are the most viable synthetic targets.  相似文献   

20.
Metal carbide compound containing highly charged C2(q-) (q = 5, 6) moiety is rather scarce. We show by means of density functional calculations that an unprecedented mu4-C2(6-) anion can viably exist as an endohedral [Sc4C2]6+ cluster in the endofullerene Sc4C2@C80. The electronic structure, ionization energy, electron affinity, 13C NMR chemical shifts, vibrational frequencies, and electrochemical redox potentials of this unique endofullerene have been predicted to assist future experimental characterization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号