首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It is well known that the melting of electrodes (mainly anode melting) in vacuum arc can increase the metal vapor density around current zero and even lead to interruption failure. In order to clarify the anode activities and their influence on arc appearance and interruption capacity, series experiments of cup-shaped axial magnetic field copper electrodes were conducted. Obvious anode melting was detected; the liquid copper flowed on the contact plate of anode and formed a clockwise swirl flow. The appearance of anode melting is likely to correlate to the transition of arc mode from high-current diffuse mode to high-current diffuse column mode. The melting of anode was severer than cathode and was influenced by the distribution of cathode spots. Various kinds of copper particles at macroscopic level can be seen in arc column. Even at the interruption limit, the majority of melted copper of anode sputtered out of gap in form of liquid droplets or was pressed into the cup of anode, the copper vapor evaporated into arc column only accounted for a few portion and no obvious anode jets was found due to large plasma pressure in arc column.   相似文献   

2.
The cathode spots from vacuum arcs on 316 stainless steel are compared with the tracks found on the same material after exposure to the plasma of the tokamak TFR 600. Further the erosion yields of vacuum arc cathodes of 316 stainless steel and titanium are determined from experiments and the measured values are compared with theoretical estimates. The velocity of the arc is investigated as a function of the applied magnetic cross-field. The scatter of both, the velocity data and the erosion yields is substantial. Improved experiments are planned.  相似文献   

3.
A laser-shadow technique of high time resolution was applied to study the erosion of high-current Cu vacuum arcs in situ. Cathodic processes lead to emission of high-velocity droplets shortly before and after current-zero. Increasing movements of the anodic melt produce large droplets several milliseconds after the arc. The many particles generated are responsible for the slow decay of vapor measured by laser-induced fluorescence (LIF). Densities greater than 1012 cm-3 were obtained near current-zero for the diffuse mode. Because of the optical thickness of the vapor to resonance radiation, radiative transfer had to be considered.  相似文献   

4.
Vacuum consumable arc remelting is a casting process carried out in a vacuum with the aim of remelting the consumable electrode in such a way that the new ingot has improved chemical and physical homogeneity. The power which causes the melting is supplied by a vacuum arc burning between the electrodes. In order to determine the furnace partitions of electrical power and current, experiments were conducted on molten-faced round electrodes. The quasi-steady melt rate was determined for both horizontally opposed 15-cm-diameter Ni electrodes and for vertically suspended 40-cm-diameter Inconel 718 electrodes. The cathode thermal power is directly proportional to the melt rate which, for the horizontally opposed electrode experiment, agrees to within 10 percent with the Ni breaker switch calorimetry measurements and with predictions from retarded potential analyzer plasma data. However, for the vertically suspended electrode experiments, the measured thermal power at the cathode is 50 percent higher than for nickel. When CO is introduced into the vertical alloy electrode system and electrode gap is increased, the cathode thermal power is reduced by approximately 50 percent. Furthermore, the electrode position measurements and observation of the ingot surface suggest that a concentrated arc is formed under these conditions.  相似文献   

5.
Understanding plasma initiation in vacuum arc discharges can help to bridge the gap between nano‐scale triggering phenomena and the macroscopic surface damage caused by vacuum arcs. We present a new twodimensional particle‐in‐cell tool to simulate plasma initiation in direct‐current (DC) copper vacuum arc discharges starting from a single, strong field emitter at the cathode. Our simulations describe in detail how a sub‐micron field emission site can evolve to a macroscopic vacuum arc discharge, and provide a possible explanation for why and how cathode spots can spread on the cathode surface. Furthermore, the model provides us with a prediction for the current and voltage characteristics, as well as for properties of the plasma like densities, fluxes and electric potentials in a simple DC discharge case, which are in agreement with the known experimental values. (© 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
The emission of numerous lines was measured from a vacuum arc between an Al cathode and Cu anode in which the diffuse, anode-spot, and intense arc modes are observed during a single pulse. An increase in Cu emission and a decrease in Al emission are observed at the transition to the anode-spot mode, and increases in both Al and Cu emission are observed at the transition to the intense-arc mode. Spatial profiles of the excited-state density and Boltzmann-distribution temperatures could be obtained at several positions in the gap. The results show not only a clear correspondence between arc voltage and the arc appearance during different arc modes, but also distinctly different spectral emission properties and droplet behavior.  相似文献   

7.
With d. c. vacuum arc discharges the dependence of cathode erosion rate on the transverse magnetic field induction is non-linear. At first erosion rate rises with the magnetic induction and then drops. The maximum erosion rate value corresponds to the magnetic induction interval (50 – 115) · 10?4 T. The range of the vacuum arc discharge maximum stability also corresponds to the same interval. When the magnetic induction rises from 2 · 10?3 up to 1.1 · 10?2 T (I = 50 A), the erosion products angular distribution monotoneously narrows and with further magnetic ficld enhancement it abruptly widens. Current rise results in increasing extension of erosion products angular distribution. Asymmetry of erosion products angular distribution does not depend on the direction of the magnetic induction vector and gradually vanishes when the magnetic induction rises up to 1 · 10?2 T and higher.  相似文献   

8.
We have measured the ion flux for different electrode materials in a vacuum arc. The vacuum arc has a point-plane geometry. The ion species in the generated plasma are identified using a time-of-flight (TOF) spectrometer. Ion species that have been generated to date include D+, Mg+, Mg++, Al+, Al++, Al+++, Ti+, Ti++, Ni+, Ni++, Cu+, Cu++, Zn+, Zn++, and In+. We found that in all cases, the ion flux measured is directly proportional to the interelectrode gap spacing and to the arc current. Typical current densities measured were ~300 mA · cm-2 at a distance of 10 cm from the gap for 150-?s pulse. The study will be used for the development of a multiple-arc array source for application to intense ion beam generation.  相似文献   

9.
This paper reports about experimental investigations on high-current vacuum-arc phenomena, especially anode-spot formation, arc states, and motion. The presented work was stimulated by lack of information about the transition process from the diffuse low-current mode to the high-current mode characterized by anode spot(s). Optoelectronic measurements, streak photographs, high-speed movies, and correlated arc voltage/current records yielded remarkable results on power-frequency vacuum arcs. Three different high-current vacuum arc modes can be observed beyond a certain threshold current. Which mode appears depends mainly on the momentary electrode distance. The modes are characterized by different anode-spot behavior and interelectrode phenomena. The transition between different arc modes is continuous. The arc modes observed on ring electrodes producing a magnetic blast field are the same as those appearing on butt-type electrodes. Anode-spot formation is preceded by congregations of cathode spots and may be initiated by thermal overload of the anode surface opposite to these cathode-spot clusters.  相似文献   

10.
An anode heat flux model has been developed for pulsed high-intensity dc arcs. The model is based on temperature-time-history measurements of the rear face of a very thin plane anode and high-speed streak photographs of the arc. The arc heat flux model is derived from a comparison of experimental data with an analytical solution of the one-dimensional heat conduction equation and the arc intensity and timing information obtained from high-speed photographs. A simplified input heat flux model consisting of connected segments of linearly varying heat fluxes with respect to time is used. Duration of the individual segments is determined from the streak photographs and the graphical match of measured rear-face temperature history and the numerical solution. Results using argon gas at atmospheric pressure indicate an initial transient heat flux regime of 100-?s duration with a peak heat flux of 2 × 109 W/m2 followed by a quasi-steady heat flux regime with a heat flux of 1 × 108 W/m2.  相似文献   

11.
The corrosion resistance of Al alloy, Ni, and stainless steel coatings deposited on 1010 steel sample anodes using pulsed high-current vacuum arcs was investigated as a function of the arc parameters. Coating thicknesses of up to 30 ?m were obtained from a sequence of six 70-ms pulses, indicating effective coating rates of up to 72 ?m/s. The thicker coatings, and the best corrosion protection, were obtained at higher currents (600-900 A) and short gaps (3 mm). The coatings were generally well bonded to the substrate. The composition of the coatings was approximately that of the source electrode. With optimal arc parameters, all three coating materials gave full corrosion protection during a 5-h salt-spray test, and Al and Ni coatings showed no signs of corrosion after a 48-h test.  相似文献   

12.
13.
This paper discusses are modes at the anode, experimental results pertinent to anode phenomena, and theoretical explanations of anode phenomena. A vacuum are can exhibit five anode discharge modes: (1) a low current mode in which the anode is basically passive, acting only as a collector of particles emitted from the cathode; (2) a second low current mode that can occur if the electrode material is readily sputtered (a flux of sputtered atoms will be emitted by the anode); (3) a footpoint mode, characterized by the appearance of one or more small luminous spots on the anode (footpoints are generally much cooler than the true anode spots present in the last two modes); (4) an anode spot mode in which one large or several small anode spots are present (such spots are very luminous, have a temperature near the atmospheric boiling point of the anode material, and are a copious source of vapor and ions); and (5) an intense are mode where an anode spot is present, but accompanied by severe cathode erosion. The are voltage is relatively low and quiet in the two low current modes and the intense are mode. It is usually high and noisy in the footpoint mode, and it can be either in the anode spot mode. Anode erosion is low, indeed negative, in the two low current modes, and it is low to moderate in the footpoint mode. Severe anode erosion occurs in both the anode spot and intense are modes. The dominant mechanism controlling the formation of an anode spot appears to depend upon the electrode geometry, the electrode material, and the current waveform of the particular vacuum are being considered. In specific experimental conditions, either magnetic constriction in the gap plasma, or gross anode melting, or local anode evaporation can trigger the transition. However, the most probable explanation of anode spot formation is a combination theory, which considers magnetic constriction in the plasma together with the fluxes of material from the anode and cathode as well as the thermal, electrical, and geometric effects of the anode in analyzing the behavior of the anode and the nearby plasma.  相似文献   

14.
This paper discusses arc modes at the anode, anode temperature measurments, anode ions, transitions of the arc into various modes (principally the anode-spot mode), and theoretical explanations of anode phenomena. A vacuum arc can exhibit five anode discharge modes: 1) a low-current mode in which the anode is basically passive, acting only as a collector of particles emitted from the cathode; 2) a second low-current mode that can occur if the electrode material is readily sputtered (a flux of sputtered atoms will be emitted by the anode); 3) a footpoint mode, characterized by the appearance of one or more luminous spots on the anode (footpoints are much cooler than the true anode spots present in the last two modes); 4) an anode-spot mode in which one large or several small anode spots are present (such spots are very luminous, have a temperature near the atmospheric boiling point of the anode material, and are a copious source of vapor and ions); and 5) an intense-arc mode where an anode spot is present, but accompanied by severe cathode erosion. The arc voltage is relatively low and quiet in the two low-current modes and the intense-arc mode. It is usually high and noisy in the footpoint mode, and it can be either in the anode-spot mode. Anode erosion is low, indeed negative, in the two low-current modes, and it is low to moderate in the footpoint mode. Severe anode erosion occurs in both the anode-spot and intense-arc modes.  相似文献   

15.
When an axial magnetic field is applied to a vacuum arc, the arc tends to be stabilized in its diffuse mode. A minimum arc voltage is found for a certain magnetic field. In this condition, interrupting current is significantly increased, and it is nearly proportional to the diameter of electrodes. About ten years ago, a practical axial magnetic field electrode was developed for vacuum circuit breakers. Since then, through various improvements in its structure, this electrode has been refined for practical application in vacuum circuit breaker interrupters. The application has successfully covered not only medium-voltage circuit breakers, but also high-voltage (84 kV), dc high-voltage, and high-current circuit breakers. In this paper, ten years experience in this area is described.  相似文献   

16.
为探索激光诱导时间分辨荧光光谱技术应用于海洋悬浮溢油原位探测的可行性,对来自胜利油田六个不同井区不同密度的原油样品的时间分辨荧光光谱进行了探测分析。结果发现,各原油样品荧光发射的持续时间基本相同,从ICCD中数字延时发生器(DDG)的输入延时52 ns开始,到输入延时82 ns左右结束,各原油样品的荧光峰强度随时间变化曲线的半高宽约10 ns;不同原油样品的最强荧光峰位及其衰减寿命不尽相同,并且与样品密度有一定相关性,密度相近的原油具有相近的最强荧光峰位和相似的荧光寿命。对比六种原油样品的时间分辨荧光光谱发现,在荧光增强时,原油荧光光谱峰位不变,当荧光从最大强度开始衰减时,六种原油样品的荧光光谱峰位均出现了不同程度(17~30 nm)的红移现象,这一定程度上反映出原油中各荧光组分的荧光衰减速率存在差异,或者存在荧光组分之间的能量传递。所观测到的原油密度相关的时间分辨光谱信息和荧光峰红移现象可望成为水下悬浮溢油识别的有效特征之一。  相似文献   

17.
Photoinduced spin-polarized transient electron paramagnetic resonance (EPR) spectra of copper 5,10,15,20-tetrakis(3-pyridyl)porphyrin (3PyNCu) in the frozen solution have been observed in the X-band. The time evolution and the temperature dependence of the spectra have been studied. The effect of molecular oxygen in the frozen solution on the polarization pattern has also been examined. The magnetic resonance parameters of the ground state of 3PyNCu have been obtained by comparing the experimental continuous-wave and echo-detected EPR spectra with the numerical computations. The magnetic resonance parameters of the excited states and the photoinduced polarizations have been investigated by time-resolved EPR (TREPR) spectroscopy and numerical analysis. The experimental spectra have been considered as a sum of the polarized spectra of the ground and excited states. Our analysis confirmed that the TREPR spectra consisted of two main patterns: the enhanced signal from the ground state and the multiplet contribution belonging to the excited quartet state.  相似文献   

18.
Recovery of dielectric strength and post-arc currents after diffuse and constricted vacuum arcs were measured for filat OFHC-Cu contacts (D = 25 mm, d = 7.5 mm) enclosed in a bakable UHV chamber. The arc current pulse had a trapezoidal shape of 5.5-ms duration with peak values up to 11 kA. In comparison with the fast recovery of diffuse arcs, the recovery of constricted arcs with gross melting is considerably retarded. Post-arc currents are simulated using the Andrews-Varey model extended to include the effects of secondary electron emission due to ion bombardment of the cathode and loss of the plasma due to thermal motion. The flow of charge carriers to the anode and the shield, which is at the anode's potential, are registered separately. The amount and decay of the residual plasma is evaluated from the measurements of post-arc current. The decay times of a few tens of a microsecond give evidence of ions with energies below 1 eV. The origin and effect of slow ions on recovery is discussed.  相似文献   

19.
20.
Vacuum-gap breakdown has been studied after high-current arc interruption with a subsequent increase in the transient recovery voltage across a gap. The effects of factors, such as the rate of the rise in the transient voltage, the potential of the shield that surrounds a discharge gap, and the arc burning time, have been determined. It has been revealed that opening the contacts earlier leads to the formation of an anode spot, which is the source of electrode material vapors into the discharge gap after current zero moment. Under the conditions of increasing voltage, this fact results in the breakdown. Too late opening leads to the breakdown of a short gap due to the high electric fields.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号