首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Molecular dynamics simulations show that calix[4]pyrrole (CP) and octafluorocalix[4]pyrrole (8F-CP) are extremely flexible molecules. CP mainly adopts the 1,3-alternate conformation in all the solvents, although the percentage of alternative conformations increases in polar solvents, especially those with good hydrogen-bonding acceptor properties. However, in the case of 8F-CP, the cone conformation is the most populated in some solvents. Transitions between conformers are common and fast, and both CP and 8F-CP can adopt the cone conformation needed for optimum interaction with anions more easily than would be predicted on the basis of previous gas-phase calculations. Furthermore, the present studies show that when a fluoride anion is specifically placed initially in close proximity to CP and 8F-CP in their respective 1,3-alternate conformations, an extremely fast change to the cone conformation is observed in both cases. The results suggest that preorganization does not represent a major impediment to anion-binding for either CP or 8F-CP, and that ion-induced conformational changes can follow different mechanisms depending on the solvent and the chemical substituents present on the calix[4]pyrrole beta-pyrrolic positions.  相似文献   

2.
Using density functional theory we investigate the ground-state geometries and electronic structures of calix[4]pyrrole (C4P) and its fluorine analogue (F-C4P). The HOMO–LUMO energy gap of C4P is 5.9 eV and remains nearly the same upon H-by-F replacement (5.7 eV). Fluorine substitution increases both the vertical and adiabatic ionization potentials of C4P by 0.8 eV while the electron affinity of either macrocycle is negative thus indicating that the corresponding radical anion in the gas-phase is thermodynamically unstable. It is shown that the topology of the LUMOs of both C4P and F-C4P have important implications for the spherical recognition of halide anions. The simulated IR, NMR, and electronic spectra display important fingerprints for the characterization of these macrocycles.  相似文献   

3.
Contrary to common expectation, calorimetric measurements do not corroborate the preference of calix[4]pyrrole for fluoride over chloride in acetonitrile solution.  相似文献   

4.
The synthesis, structure, and anion binding properties of chromogenic octamethylcalix[4]pyrroles (OMCPs) and their N-confused octamethylcalix[4]pyrrole isomers (NC-OMCPs) containing an inverted pyrrole ring connected via alpha'- and beta-positions are described. X-ray diffraction analyses proved the structures of two synthesized isomeric pairs of OMCPs and NC-OMCPs. The addition of anions to solutions of chromogenic OMCPs and NC-OMCPs resulted in different colors suggesting different anion-binding behaviors. The chromogenic NC-OMCPs showed significantly stronger anion-induced color changes compared to the corresponding chromogenic OMCP, and the absorption spectroscopy titrations indicated that chromogenic OMCPs and NC-OMCPs also possess different anion binding selectivity. Detailed NMR studies revealed that this rather unusual feature stems from a different anion-binding mode in OMCPs and NC-OMCPs, one where the beta-pyrrole C-H of the inverted pyrrole moiety participates in the hydrogen-bonded anion-NC-OMCP complex. Preliminary colorimetric microassays using synthesized chromogenic calixpyrroles embedded in partially hydrophilic polyurethane matrices allow for observation of analyte-specific changes in color when the anions are administered in the form of their aqueous solutions and in the presence of weakly competing anions.  相似文献   

5.
A new strapped calix[4]pyrrole containing a fluorophore as part of the strap has been synthesized and characterized. Association constants with various anions have been determined using both fluorescence titration and isothermal titrations calorimetry (ITC). The two sets of association constants were found to be in good agreement with one another. The fluorescence emission properties of this new receptor could be controlled by addition of Na+ (or H2O) and anions. However, the fluorescence quenching by anions is only observed in the presence of Na+ (or H2O). All the experimental evidence is consistent with the notion that independent PET processes are modulated by separate cation and anion recognition events. As such, this system operates as an elementary logic gate wherein anion and cation concentrations serve as the input and fluorescence intensity changes provide the output.  相似文献   

6.
7.
The interaction of calixpyrrole with several chloride salts has been studied in the solid state by X-ray crystallography as well as in solution by isothermal titration calorimetry (ITC) and (1)H NMR spectroscopic titrations. The titration results in dimethylsulfoxide, acetonitrile, nitromethane, 1,2-dichloroethane, and dichloromethane, carried out using various chloride salts, specifically tetraethylammonium (TEA), tetrapropylammonium (TPA), tetrabutylammonium (TBA), tetraethylphosphonium (TEP), tetrabutylphosphonium (TBP), and tetraphenylphosphonium (TPhP), showed no dependence on method of measurement. The resulting affinity constants (K(a)), on the other hand, were found to be highly dependent on the choice of solvent with K(a)'s ranging from 10(2)-10(5) M(-1) being recorded in the test solvents used for this study. In dichloromethane, a strong dependence on the countercation was also seen, with the K(a)'s for the interaction with chloride ranging from 10(2)-10(4) M(-1). In the case of TPA, TBA, and TBP, the ITC data could not be fit to a 1:1 binding profile.  相似文献   

8.
The synthesis and preliminary solution phase ion binding properties of the N-tosylpyrrolidine calix[4]pyrrole 2 are reported. This β-octaalkyl-substituted calix[4]pyrrole, the first to be prepared via a direct condensation reaction, was obtained by reacting the 3,4-alkyl-functionalized pyrrole 8 with acetone in the presence of an acid catalyst. On the basis of (1)H NMR spectroscopic analyses and isothermal titration calorimetry, it was concluded that, compared with the parent, β-unsubstituted calix[4]pyrrole (1), compound 2 possesses significantly enhanced binding ability for halide anions in chloroform. Furthermore, 2 proved capable of solubilizing in chloroform solution the otherwise insoluble salts, CsF and CsCl. These effects are ascribed to the interactions between the four tosyl groups present in 2 and the counter cations of the halide anion salts.  相似文献   

9.
《Tetrahedron》2019,75(36):130491
Squaramide-substituted calix[4]pyrrole 2 was synthesized and its anion-binding properties were investigated. On the basis of UV spectroscopy, 1H NMR spectroscopic and computational DFT model analyses, compared with the parent calix[4]pyrrole 1, compound 2 shows significantly enhanced binding affinities for anions in CH2Cl2, and it was concluded that this increase in affinity is ascribed to participation of the squaramide unit in anion binding.  相似文献   

10.
A double-cavity calix[4]pyrrole derivative, meso-tetramethyl-tetra[N-(2-phenoxyethyl)-N'-phenylurea]calix[4]pyrrole, 1, with enhanced hosting ability for the fluoride anion has been designed and characterized. Its interaction with anions (fluoride, chloride, bromide, iodide, dihydrogen phosphate, hydrogen sulfate, perchlorate, nitrate, and trifluoromethane sulfonate) was qualitatively and quantitatively assessed through 1H NMR, conductance, and calorimetric studies. The outcome of these investigations demonstrates that 1 interacts only with fluoride and dihydrogen phosphate anions in dipolar aprotic media. However, the composition of these complexes differs in that two units of fluoride are taken per unit of 1, while a 1:1 anion/ligand complex is formed with the dihydrogen phosphate anion. Results from the 1H NMR studies are striking in that these not only provide information about the active sites of the ligand-anion interaction but also allow the establishment of the sequence of events taking place during fluoride complexation. Thus, hydrogen-bond formation between the pyrrolic hydrogen and the fluoride anion is followed by the uptake of a second anion through the same type of interaction, but with the phenyl urea. It is also the latter group that is responsible for the interaction of 1 with the dihydrogen phosphate anion. Finally, this paper illustrates the importance of structural information for the interpretation of the thermodynamics associated with these systems.  相似文献   

11.
A ditopic ion-pair receptor (1), which has tunable cation- and anion-binding sites, has been synthesized and characterized. Spectroscopic analyses provide support for the conclusion that receptor 1 binds fluoride and chloride anions strongly and forms stable 1:1 complexes ([1·F](-) and [1·Cl](-)) with appropriately chosen salts of these anions in acetonitrile. When the anion complexes of 1 were treated with alkali metal ions (Li(+), Na(+), K(+), Cs(+), as their perchlorate salts), ion-dependent interactions were observed that were found to depend on both the choice of added cation and the initially complexed anion. In the case of [1·F](-), no appreciable interaction with the K(+) ion was seen. On the other hand, when this complex was treated with Li(+) or Na(+) ions, decomplexation of the bound fluoride anion was observed. In contrast to what was seen with Li(+), Na(+), K(+), treating [1·F](-) with Cs(+) ions gave rise to a stable, host-separated ion-pair complex, [F·1·Cs], which contains the Cs(+) ion bound in the cup-like portion of the calix[4]pyrrole. Different complexation behavior was seen in the case of the chloride complex, [1·Cl](-). Here, no appreciable interaction was observed with Na(+) or K(+). In contrast, treating with Li(+) produces a tight ion-pair complex, [1·Li·Cl], in which the cation is bound to the crown moiety. In analogy to what was seen for [1·F](-), treatment of [1·Cl](-) with Cs(+) ions gives rise to a host-separated ion-pair complex, [Cl·1·Cs], in which the cation is bound to the cup of the calix[4]pyrrole. As inferred from liposomal model membrane transport studies, system 1 can act as an effective carrier for several chloride anion salts of Group 1 cations, operating through both symport (chloride+cation co-transport) and antiport (nitrate-for-chloride exchange) mechanisms. This transport behavior stands in contrast to what is seen for simple octamethylcalix[4]pyrrole, which acts as an effective carrier for cesium chloride but does not operates through a nitrate-for-chloride anion exchange mechanism.  相似文献   

12.
A cyclo[2]carbazole[2]pyrrole (2) consisting of two carbazoles and two pyrroles has been synthesized by directly linking the carbazole 1- and 8-carbon atoms to the pyrrole α-carbon atoms. Macrocycle 2 is an extensively conjugated 16-membered macrocyclic ring that is fixed in a pseudo-1,3-alternate conformation. This provides a preorganized anion binding site consisting of two pyrrole subunits. 1H NMR spectroscopic analysis revealed that only the two diagonally opposed pyrrole NH protons, as opposed to the carbazole protons, take part in anion binding. Nevertheless, cyclo[2]carbazole[2]pyrrole 2 binds representative anions with higher affinity in CD2Cl2 than calix[4]pyrrole (1), a well-studied non-conjugated tetrapyrrole macrocycle that binds anions via four pyrrolic NH hydrogen bond interactions. On the basis of computational studies, the higher chloride anion affinity of receptor 2 relative to 1 is rationalized in terms of a larger binding energy and a lower host strain energy associated with anion complexation. In the presence of excess fluoride or bicarbonate anions, compound 2 loses two pyrrolic NH protons to produce a stable dianionic macrocycle [2–2H]2− displaying a quenched fluorescence.

Less is more: two NH hydrogen bond donors in a preorganized receptor provide greater anion affinity than the four NH moieties present in the classic anion receptor, calix[4]pyrrole.  相似文献   

13.
Two redox anion receptors based on calix[4]pyrrole and ferrocene have been synthesized. The electrochemical investigation revealed that these compounds can be response to the anions with different shifts of Fc/Fc+ couple. With the 1H NMR titration study, the selectivity to F and AcO ions in CD3CN solution was confirmed. The conformations of the mono-aromatic meso-substituted calix[4]pyrroles, which were the synthetical intermediate of the ferrocene based receptors, and their anion complexes in the solid state have also been studied by single X-ray crystallography, and the rationality of the crystal conformations was proved by theoretical study.  相似文献   

14.
A new calix[4]pyrrole bearing a nitrovinyl group at β-pyrrolic position was synthesized and studied as a cyanide selective chemodosimetric sensor. Selective Michael-type nucleophilic addition of cyanide to the α-position of the nitrovinyl group followed by β-elimination resulted in the unique product 3.  相似文献   

15.
Meso-diacylated calix[4]pyrrole was obtained via acid catalysed condensation of meso-acylated dipyrromethane with acetone. Selective presence of flexible substituents at the calix[4]pyrrole periphery led to interesting structural motifs in the solid state along with enhanced binding towards anions, especially dihydrogenphosphate ion via anchoring.  相似文献   

16.
A new vic-dioxime functionalized calix[4]pyrrole was synthesized from anti-chloroglyoxime and 4-aminophenyl-calix[4]pyrrole at room temperature. The Ni(II) complex has been prepared by reacting the ligand with NiCl2·6H2O in ethanol. These receptors were characterized by elemental analyses, 1H and 13C NMR spectra, IR and mass spectra. Electrochemical properties of the ligand, and its Ni(II) complex were investigated in CH2Cl2 solution by cyclic voltammetry at 100 mV s?1 scan rate. Anion-binding studies were carried out using UV–Vis, and 1H NMR titrations, revealed that the Ni(II) complex exhibits selective recognition toward F? over other anions. The selectivity for F among the halides is attributed mainly to the hydrogen-bond interaction of the receptor with F. Receptor showed colour change from red to brown in the presence of tetrabutylammonium fluoride (TBAF) with 1:2 stoichiometry.  相似文献   

17.
A stiff-stilbene strapped calix[4]pyrrole receptor can be reversibly switched by light between a strong chloride-binding Z-isomer and a very weakly binding E-isomer. The light-induced switching process is monitored by UV-Vis and 1H NMR spectroscopy and chloride binding is studied in detail using both 1H NMR and ITC titrations in DMSO and MeCN. In DMSO, at millimolar concentrations, switching from a fully bound to an almost fully unbound state can be triggered. Quantification of the binding constants in MeCN reveals an extraordinary 8000-fold affinity difference between the Z- and E-isomer. Single crystal X-ray crystallographic analysis gives insight into the structure of the photogenerated E-isomer and the geometry of the chloride-bound receptors is optimized by DFT calculations. The highly effective control of binding affinity demonstrated in this work opens up new prospects for on demand binding and release in extractions and photocontrol of membrane transport processes, among other applications.

A reconfigurable calix[4]pyrrole receptor containing a stiff-stilbene strap can be switched by light between a strong and weak binding form, showing an 8000-fold affinity difference for chloride.  相似文献   

18.
We describe the first synthesis of the novel meso-pentaspirocyclohexyl calix[5]pyrrole 2b. Anion-guest properties of the new compound were evaluated with respect to fluoride, chloride, and bromide tetrabutylammonium salts by 1H NMR titration techniques in deuterated dichloromethane at 22 °C by following the induced shifts in the NH resonances upon complexation.  相似文献   

19.
A new "super-extended cavity" tetraacetylcalix[4]pyrrole derivative was synthesized and characterized, and X-ray crystal structures of complexes bound to fluoride and acetonitrile were obtained. The binding behavior of this receptor was investigated by NMR titration, and the complex was found to exclusively bind fluoride ions in DMSO-d(6). This unusual binding behavior was investigated by Monte Carlo free energy perturbation simulations and Poisson calculations, and the ion specificity was seen to result from the favorable electrostatic interactions that the fluoride gains by sitting lower in the phenolic cavity of the receptor. The effect of water present in the DMSO on the calculated free energies of binding was also investigated. Owing to the use of a saturated ion solution, the effect of contaminating water is small in this case; however, it has the potential to be very significant at lower ion concentrations. Finally, the adaptive umbrella WHAM protocol was investigated and optimized for use in binding free energy calculations, and its efficiency was compared to that of the free energy perturbation calculations; adaptive umbrella WHAM was found to be approximately two times more efficient. In addition, structural evidence demonstrates that the protocol explores a wider conformational range than free energy perturbation and should therefore be the method of choice. This paper represents the first complete application of this methodology to "alchemical" changes.  相似文献   

20.
The conformational preference of calix[4]pyrrole and its fluoride and chloride anion-binding properties have been investigated by density functional theory calculations. Geometries were optimized by the BLYP/3-21G and BLYP/6-31G methods, and energies were evaluated with the BLYP/6-31+G method. To model the effect of medium, the SCIPCM solvent model was also employed. Four typical conformations of the parent substituent-free calix[4]pyrrole were studied. Both in the gas phase and in CH(2)Cl(2) solution, the stability sequence is predicted to be 1,3-alternate > partial cone > 1,2-alternate > cone. The cone conformation is predicted to be about 16.0 and 11.4 kcal/mol less stable in the gas phase and CH(2)Cl(2) solution, respectively. This is mainly due to electrostatic repulsions arising from the all-syn pyrrole/pyrrole/pyrrole/pyrrole arrangement present in this conformer. The existence of possible 1:1 and 1:2 anion-binding modes were explored in the case of fluoride anion, and the factors favoring the 1:1 binding mode are discussed. The calculated binding energy for fluoride anion is about 15 kcal/mol larger than that for chloride anion. The calculated binding energy for chloride anion agrees with the experimental value very well. The presence of meso-alkyl substituents destabilizes the cone conformer with respect to the 1,3-alternate conformer and, therefore, reduces the anion-binding affinity by 3-4 kcal/mol. The strength of N-H- - -anion hydrogen bonds in the various structures subject to study were estimated on the basis of the calculated anion-binding energies and the predicted structural deformation energies of substituent-free calix[4]pyrrole.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号