首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel modified base-catalyzed Sol-Gel process containing polyvinyl alcohol (PVA) has been proposed to prepare the porous SiO2 film. In this process, the growth of the sol particles was artificially broken off and controlled by acid-stabilising agent and PVA. As a result, a uniform and stable precursor solution was obtained in which the size of sol particles was stable. This new process efficiently overcomes the shortcomings of the traditional base-catalysed Sol-Gel process and can be employed to prepare porous SiO2 films with desired porosity and thickness. The influence of the catalyst, the reaction temperature, the pH value, the stabilizing agent and the PVA additive on the size of the SiO2 sol particles is systematically studied in part I.  相似文献   

2.
SiO2 sol-gel films doped with cobalt oxide nanocrystals have been fabricated. The nanocrystals precipitate in the glass film at 500_°C, while the film is still porous. The nanocomposite films showed a reversible change in the optical transmittance when exposed to CO in the 250 < < 850 nm range. The effects of the residual porosity and testing temperature have been studied. The gas sensing properties of the cobalt oxide nanocrystals doped films are compared with those of nickel oxide nanocrystals doped silica film, previously reported.  相似文献   

3.
The SiO2 thin films were prepared by a process which combines a sol-gel method and photoirradiation. The HF etch rate and microhardness of a film prepared by this process were better than those of a film furnace-fired at same temperature. The Raman and 29Si solid state NMR spectra of film prepared by this process were similar to those of a film furnace-fired at higher temperature. There are many unstable folded non-linear SiO2 species in the film prepared at low temperature. On treatment at higher temperature, unstable folded non-linear Si-O-Si rearranges to the stable linear Si-O-Si bond. Photoirradiation enhances this structure change. The process provided denser and harder SiO2 thin films, even at low temperature, than the conventional furnace-firing method did.  相似文献   

4.
We present the optical and the structural properties of porous SiO2 films fabricated by using a glancing angle deposition technique. The influence of the glancing angle on the pseudorefractive index of porous SiO2 films was studied by spectroscopic ellipsometry in the UV–visible region. The relationships among the pseudorefractive index, the porosity, and the glancing angle are determined. The results show that the pseudorefractive index decreases and the porosity increases with the increase of glancing angle. The minimum pseudorefractive index is found to be 1.11 at 532 nm for the porous SiO2 film deposited at a glancing angle of 87°. The structural and surface morphology of these samples was also investigated by using a scanning electron microscope. The results indicate that the as‐deposited SiO2 thin films are porous with a tilted‐columnar structure and low pseudorefractive index. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
The photo-induced hydrophilicity of TiO2 films deposited on stainless steel substrates and silicon wafers using two different sol-gel routes has been investigated. The results indicate that crystalline titanium oxide films with excellent hydrophilic properties can be obtained on silicon wafer with both routes. XPS and XRD data reveal that films deposited on stainless steel exhibit crystallization features similar to those of films deposited on silicon wafers, and only differ by their oxidation degree owing to a TiO2 reduction process associated to a diffusion of iron ions during deposition of the acidic sol and/or high temperature post-treatment. Consequently, hydrophilic properties of films deposited on stainless steel are inhibited. The deposition of a SiOx barrier layer at the film/substrate interface allows preventing such a detrimental substrate influence. A low temperature deposition route of the TiO2 film associated to the presence of a barrier layer yields best results in preventing iron contamination of the films.  相似文献   

6.
PZT films with different microstructure and Zr:Ti ratios were fabricated on ITO/glass and platinized silicon wafer substrates by dip-coating. A dense film of 2% porosity and a porous film of 19% porosity were obtained by repetition of thin and thick coatings, respectively. Development of pores during heating the film was examined and heating process factors were investigated. In the film fabricated on ITO/glass substrates, an existence of non-perovskite and low permittivity layer was confirmed by measurement of film thickness dependence of the dielectric constant. Among the films studied, the film with molar composition of Ti:Zr = 5:5 exhibited the largest dielectric constant and apparent piezoelectric coefficient, d 33, though the values were small. Apparent piezoelectric coefficients of d 33 and g 33 of the porous films were larger than those of the dense films.  相似文献   

7.
We have developed the transparent photoactive TiO2 thin film coated on soda lime glass (SLG) by sol-gel process. Titanium dioxide thin films coated on SLG exhibit lower photocatalytic activity due to the thermal diffusion of Na ion from the SLG substrate. Thin SiO2 film precoating is very effective to prevent the thermal diffusion of Na ion. We have evaluated the photocatalytic decomposition of gaseous acetaldehyde and the photo-induced surface wettability of TiO2 films with and without SiO2 precoating layer. As expected, the TiO2 film on SiO2/SLG is more photoactive to decompose acetaldehyde than that on SLG. However, as for wettability conversion, there was little difference in the conversion rate between TiO2 film without SiO2, and TiO2 film with SiO2. Different dependence of Na ion diffusion on two kinds of photo-induced reaction on TiO2 is discussed based on the difference of the photo-induced reaction mechanism.  相似文献   

8.
Optical Application of (Pigmented) Sol-Gel Coatings   总被引:3,自引:0,他引:3  
The performance of the anti-reflection stack antimony-doped tin oxide/SiO2 improves considerably if the refractive index of the SiO2 layer decreases from 1.45 to 1.41 by the introduction of porosity. Porosity can be introduced by the addition of high-boiling co-solvents (or templates e.g. sebacates) to the coating liquid. Fine-tuning of the liquid composition allows the formation of a homogeneous, non-scattering SiO2 layer with a refractive index of 1.41 and pencil hardness of H7-H8 on large screens (diagonal >1 meter) if a curing temperature of 160°C was used.Another interesting application is the formation of transparent, strongly coloured layers on lamp bulbs. Due to the high operating temperatures, strict requirements are placed on the matrix material and the pigment used. Inorganic pigments have good temperature stability, but their colour saturation is weaker than that of organic pigments, demanding the formation of relatively thick coatings. In order to achieve this, Methyltrimethoxysilane (MTMS) was used as matrix material precursor. Fully transparent, temperature-resistant coatings were developed.  相似文献   

9.
TiO2 thin film photocatalysts coated onto soda lime glass were prepared by a dip coating process using a highly viscous solvent. The source of the TiO2 was tetraisopropyl orthotitanate, and -terpineol was used as the solvent. Two types of thin film preparation procedures based on dip coating (a sol-gel system and thermal decomposition system) were used to prepare the samples. TiO2 thin films were obtained after calcination at 450°C for 1 hour. The film thickness obtained with a single dipping was proportional to the viscosity of the dip coating solutions. The obtained thin films were transparent with a thickness of 1 m. The crystal form of the obtained photocatalyst films was anatase alone. The thin films were formed with aggregated nano-sized TiO2 single crystals (7–15 nm). The photocatalytic activity of the TiO2 thin films, as evaluated by the photooxidation of NO (1 ppm) in dry air, was as high as our previous TiO2 thin films prepared by the sol-gel method.  相似文献   

10.
SiO2-ZrO2 based nanostructured multilayers films have been prepared by sol–gel processing from metallorganic precursors by low temperature inorganic polymerization reactions. Simultaneous gelation of both precursors was realized. Homogeneous and transparent films were obtained at room temperature by dip- and spin-coating on glass and silicon wafer substrates. Samples with successively deposited layers (1–3 layers) and successive thermal treatments have been also studied. Each deposited layer was thermally treated for 1 h at 300°C. The coatings were characterized by XRD, spectroellipsometry (SE), UV-VIS spectroscopy and AFM methods. The influence of substrates, number of coatings and number of thermal treatments on the optical and structural properties of the films was established. The thickness of three deposited SiO2-ZrO2 layers is about 496 nm on glass substrates and 413 nm on the silicon wafer substrate. The films deposited on glass are more porous than those deposited on silicon. The properties of optical waveguide prepared from SiO2-ZrO2 layers on silicon substrates will be discussed.  相似文献   

11.
We have successfully prepared transparent and porous anatase nanocrystals-dispersed films by treating the sol-gel derived TiO2-SiO2 films containing poly(ethylene glycol), PEG, with hot water. This process was done at temperatures lower than 100°C under atmospheric pressure, and thus anatase nanocrystals-dispersed films can be formed on various kinds of substrates including organic polymers with poor heat resistance. The changes in structure and composition of the TiO2-SiO2 gel films with hot water treatment were related to the formation process of anatase nanocrystals in the TiO2-SiO2 gel films with hot water treatment. The formation of anatase nanocrystals was found to proceed to hydrolysis of Si–O–Ti bonds and dissolution of SiO2 component. In addition, porous film structure formed by leaching of PEG with hot water treatment led to homogenous dispersion of anatase nonocrystals in the films.  相似文献   

12.
Homogeneous crack-free lead zirconate titanate (Pb(Zr0.45Ti0.55)O3: PZT 45/55) films were prepared by a chemically modified sol-gel process using lead acetate trihydrate, zirconium n-propoxide, and titanium isopropoxide precursors. The coating solutions were modified by the addition of diethanolamine. Single and multilayer films were deposited with a 2000 rpm spin rate on fused silica and MgO(100) substrates. Multiple spin coating with an intermediate heat treatment in air at 400°C for 3 min between coatings was performed to obtain films up to 2 m in thickness. The formation of the tetragonal perovskite structure was found to depend on the intermediate firing temperature, final annealing temperature, and annealing time. A 650°C rapid thermal annealing treatment in oxygen was required to crystallize the PZT film into the perovskite structure. The films were characterized using optical spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and thermo-gravimetry and differential scanning calorimetry (TG-DSC). The optical constants of the PZT films were evaluated from spectral transmittance and reflectance measurements. Optical constants are presented over the visible and near infrared region.  相似文献   

13.
Titania and silica-based porous coatings have been produced via sol–gel route in the presence of pore-creating agents PEG and viscous solvent -terpineol, or template agents CTAB, as well as triblock copolimer Pluronic P123. Porous titania films were characterised by HR TEM, UV-Vis, XRD, ellipsometry, ARS methods. The dispersion of the refractive index, the porosity (32–39%) and the thickness of the samples were estimated by integrating sphere transmission and reflection spectra with 3D angular resolved light scattering. The catalytic activity of mesoporous TiO2 and TiO2/ZrO2 as well as SiO2-benzophenone films in the process of CrVI to CrIII and Ag+ to Ag0 photoreduction have been studied.  相似文献   

14.
To obtain porous TiO2 film, the precursor sol was prepared by hydrolysis of Ti isopropoxide and then complexed with trehalose dihydrate. The porous TiO2 film was fabricated by the dip-coating technique on glass substrates using this solution. The TiO2 film was calcined at 500 °C. The maximum thickness of the film from one-run dip-coating was ca. 740 nm. The film was composed of nanosized particle and pores. The porosity of the TiO2 film was increased by addition of trehalose dihydrate to the sol. The porous TiO2 films were calcined at different temperatures. The effects of calcination temperature on the microstructure of the porous TiO2 film were investigated. The porous film prepared from sol containing trehalose still kept the porous structure after calcination at 950 °C. The phase transition temperature of the film from anatase to rutile was shifted from 650 to 700 °C by addition of trehalose to the sol.  相似文献   

15.
Poly(3,4-ethylenedioxythiophene) (PEDOTh) films were deposited on platinum electrodes by consecutive potential scanning from acetonitrile solutions with 50 mM EDOTh. The effect of the supporting electrolyte used during electropolymerisation, namely LiClO4, TBAClO4 and TBAPF6, in the redox behaviour, surface morphology and degree of crystallinity of the films has been investigated by cyclic voltammetry, X-ray diffraction analysis and scanning electron microscopy, respectively. The use of LiClO4 leads to a higher electropolymerisation efficiency and an increase of electroactivity and crystallinity of the polymers. This electrolyte promotes the formation of a more compact morphology with clusters of different sizes. The film porosity increases when Li+ is substituted by a larger cation, TBA+. The PEDOTh layer obtained with as counter ion is more porous than the obtained with and presents a fibrillar aspect. The influence of the scan rate was also studied for films obtained in TBAClO4, and high electropolymerisation efficiency and an increase of crystallinity were observed for a low scan rate. PEDOTh films with different number of growing cycles were obtained in LiClO4, pointing their redox behaviour to structural rearrangement during thickening; the thicker film presents higher structural organization. It was possible to prepare films in different conditions, but with the same electroactivity, showing the same structural arrangement.  相似文献   

16.
锐钛矿型多孔TiO2薄膜的溶解法制备及性能表征   总被引:2,自引:0,他引:2  
在具有锐钛矿晶粒的TiO2溶胶中加入苯丙乳液粒子,使用该混合液浸渍提拉涂膜,然后利用甲苯将薄膜中的苯丙乳液粒子溶解去除,并通过重复涂膜,在室温下获得了具有良好多孔性的锐钛矿型TiO2薄膜。考察了多孔薄膜的表面形貌、光学性能、吸附性能和光催化性能。结果表明:随薄膜涂膜次数的增加,TiO2多孔薄膜的吸光度增大,透光率减小,光吸收边波长向长波方向移动。罗丹明B在TiO2多孔薄膜上的吸附量随涂膜次数的增加先升高,后降低;多次涂膜会在薄膜中产生半封闭的孔洞,经过长时间的毛细渗透等作用能进一步增加薄膜对罗丹明B的吸附。TiO2多孔薄膜通过吸附+光催化氧化的模式快速分解罗丹明B,其活性主要受到薄膜在光催化反应初期的吸附能力的影响。此外,TiO2的负载量、光的利用效率、以及光生电荷迁移及其分离等也是影响薄膜光催化活性的因素。  相似文献   

17.
The preparation of SiO2-TiO2 thin films by the sol-gel method using silicic acid and titanium tetrachloride as starting materials was studied. The homogeneous sols were obtained by the condensation reaction of silicic acid with titanium tetrachloride in methanol-tetrahydrofuran. The dipcoating of slide glasses and silicon wafers followed by heat treatment gave oxide thin films of 88–93% transmittance, 3000–4500 Å thickness, and 1.45–1.80 refractive index, depending on heat-treatment temperature and TiO2 content. FT-IR measurement showed that the Si-O-Ti bond is formed even in the sol and films. The variations of film thickness and refractive index on transformation from the gels into the oxides were found to be quite low.  相似文献   

18.
Fabrication of ferroelectric Pb(Zr0.52Ti0.48)O3 (PZT) thick films on a Pt/Ti/SiO2/Si substrate using powder-mixing sol-gel spin coating and continuous wave CO2 laser annealing technique to treat the specimens with at a relatively low temperature was investigated in the present work. PZT fine powders were prepared by drying and pyrolysis of sol-gel solutions and calcined at temperatures from 400 to 750°C. After fine powder-containing sol-gel solutions were spin-coated on a substrate and pyrolyzed, CO2 laser annealing was carried out to heat treat the specimens. The results show that laser annealing provides an extremely efficient way to crystallize the materials, but an amorphous phase may also form in the case of overheating. Thicker films absorb laser energy more effectively and therefore melt at shorter periods, implying a significant volume effect. A film with thickness of 1 μm shows cracks and rough surface morphology and it was difficult to obtain acceptable electrical properties, indicating importance of controlling interfacial stress and choosing appropriate size of the mixing powders. On the other hand, a thick film of 5 μm annealed at 100 W/cm2 for 15 s exhibits excellent properties (P r = 36.1 μC/cm2, E c = 19.66 kV/cm). Films of 10 μm form a melting zone at the surface and a non-crystallized bottom layer easily at an energy density of 100 W/cm2, showing poor electrical properties. Besides, porosity and electrical properties of thick films can be controlled using appropriate processing parameters, suggesting that CO2 laser annealing of modified sol-gel films is suitable for fabricating films of low dielectric constants and high crystallinity.  相似文献   

19.
We have prepared porous and network-like nanofilms of gold by galvanic replacement of a layer of copper particles acting as a template. The films were first characterized by scanning electron microscopy and X-ray diffraction, and then modified with cysteamine so to enable the covalent immobilization of the enzyme microperoxidase-11. The immobilized enzyme undergoes direct electron transfer to the underlying electrodes, and the electrode displays high electrocatalytic activity towards the reduction of oxygen and hydrogen peroxide, respectively, owing to the largely enhanced electroactive surface of the porous gold film. The detection limit of H2O2 is 0.4 μM (3 S/N).
Figure
In this work, porous network-like Au films were prepared by galvanic replacement using Cu film as a sacrificial template. The cysteamine modified Au film was used to immobilize microperoxidase-11, which showed good stability and excellent electrochemical performance towards the reduction of O2 and H2O2, respectively  相似文献   

20.
Polycrystalline Fe2TiO5 films were prepared on nesa silica glass substrates by the sol-gel method, and their photoanodic properties were measured in a three-electrode wet cell with an aqueous buffer solution of pH = 7. Gel films were crystallized into Fe2TiO5 when fired at 500°C. The photoanodic current significantly increased when the films were fired at 700°C, and then decreased with increasing firing temperature. Thicker films obtained by repeating the gel film deposition and firing showed smaller photocurrent, and the 50 nm thick film prepared via non-repetitive deposition exhibited the maximum photocurrent. Although the photoresponse was extended to wavelengths near 500 nm, the maximum quantum yield was as low as 0.12 at a wavelength of 340 nm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号